Couvre les techniques d'estimation spectrale comme la réduction et l'estimation paramétrique, en soulignant l'importance des modèles AR et la probabilité de Whittle dans l'analyse des séries chronologiques.
Couvre l'estimation paramétrique, la modélisation saisonnière, les méthodes Box-Jenkins, les calculs de variance et les mesures de dépendance dans l'analyse des séries chronologiques.
Explore les outils de traitement statistique des signaux pour les communications sans fil, y compris l'estimation spectrale et la détection, la classification et le filtrage adaptatif des signaux.
Explore les modèles de séries chronologiques, en mettant l'accent sur les processus autorégressifs, y compris le bruit blanc, AR(1) et MA(1), entre autres.
Couvre la sélection des modèles, les diagnostics et les prévisions dans lanalyse des séries chronologiques, en mettant laccent sur les défis de déterminer lordre du modèle basé sur les fonctions dautocorrélation et dautocorrélation partielle.
Couvre l'estimation spectrale dans l'analyse des séries chronologiques, y compris les noyaux d'imagerie, les méthodes de compression et les modèles AR.