Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les exercices corrigés de l'examen 2020 dans le domaine de la robotique, y compris des sujets tels que la précision, la vitesse, les moteurs à courant continu, le rapport d'engrenage optimal, la dynamique des bras de robot, les encodeurs et la cinématique.
Explore les actionneurs hydrauliques, pneumatiques et électromécaniques utilisés dans la robotique, y compris les moteurs pas à pas et les comparaisons d'énergie spécifiques.
Explore les robots d'entraînement en renforçant l'apprentissage et l'apprentissage de la démonstration, mettant en évidence les défis de l'interaction homme-robot et de la collecte de données.
Explore l'apprentissage et le contrôle adaptatif pour les robots, en mettant l'accent sur la modulation des systèmes dynamiques pour améliorer la stabilité et permettre le mouvement réactif.
Explore deux paradigmes pour la robotique, des composants comme les moteurs, les engrenages, les capteurs et les contrôleurs, et des considérations de conception pour divers types de robots.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Explore le contrôle conforme pour les robots par impédance et rigidité variable, permettant des interactions sûres et adaptatives avec l'environnement.
Explore l'apprentissage et le contrôle adaptatif pour les robots, en mettant l'accent sur les défis, la planification de parcours avec des systèmes dynamiques, et les applications de planification en temps réel.