Hypothèse de RiemannEn mathématiques, l'hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien allemand Bernhard Riemann, selon laquelle les zéros non triviaux de la fonction zêta de Riemann ont tous une partie réelle égale à 1/2. Sa démonstration améliorerait la connaissance de la répartition des nombres premiers et ouvrirait des nouveaux domaines aux mathématiques. Cette conjecture constitue l'un des problèmes non résolus les plus importants des mathématiques du début du : elle est l'un des vingt-trois fameux problèmes de Hilbert proposés en 1900, l'un des sept problèmes du prix du millénaire et l'un des dix-huit problèmes de Smale.
Fonction zêta de Riemannvignette|upright=2|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : des couleurs vives indiquent des valeurs proches de 0 et la nuance indique l'argument de la valeur. Le point blanc pour s = 1 est le pôle ; les points noirs sur l'axe réel négatif (demi-droite horizontale) et sur la droite critique Re(s) = 1/2 (droite verticale) sont les zéros. vignette|upright=2|Carte des couleurs utilisées dans la figure du dessus.
Fonction arithmétiqueEn théorie des nombres, une fonction arithmétique f est une application définie sur l'ensemble des entiers strictement positifs et à valeurs dans l'ensemble des nombres complexes. En d'autres termes, une fonction arithmétique n'est rien d'autre qu'une suite de nombres complexes, indexée par N*. Les fonctions arithmétiques les plus étudiées sont les fonctions additives et les fonctions multiplicatives. Une opération importante sur les fonctions arithmétiques est le produit de convolution de Dirichlet.
Fonction êta de DirichletLa fonction êta de Dirichlet est une fonction utilisée dans la théorie analytique des nombres. Elle peut être définie par : où ζ est la fonction zêta de Riemann. Néanmoins, elle peut aussi être utilisée pour définir la fonction zêta sauf aux zéros du facteur 1–2. Elle possède une expression en série de Dirichlet, valide pour tout nombre complexe s avec une partie réelle positive, donnée par : d'où son nom parfois donné de fonction zêta alternée.
Fonction de Tchebychevvignette|La fonction de Tchebychev ψ(x) pour x < 50 En mathématiques, la fonction de Tchebychev peut désigner deux fonctions utilisées en théorie des nombres. La première fonction de Tchebychev θ(x) ou θ(x) est donnée par où la somme est définie sur les nombres premiers p inférieurs ou égaux à x. La seconde fonction de Tchebychev ψ(x) est définie de façon similaire, la somme s'étendant aux puissances premières inférieures à x : où Λ désigne la fonction de von Mangoldt.
Série génératriceEn mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.
Fonction somme des puissances k-ièmes des diviseursEn mathématiques, la fonction "somme des puissances k-ièmes des diviseurs", notée , est la fonction multiplicative qui à tout entier n > 0 associe la somme des puissances -ièmes des diviseurs positifs de n, où est un nombre complexe quelconque : La fonction est multiplicative, c'est-à-dire que, pour tous entiers et n premiers entre eux, . En effet, est le produit de convolution de deux fonctions multiplicatives : la fonction puissance -ième et la fonction constante 1.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Fonction thêtaEn mathématiques, on appelle fonctions thêta certaines fonctions spéciales d'une ou de plusieurs variables complexes. Elles apparaissent dans plusieurs domaines, comme l'étude des variétés abéliennes, des espaces de modules, et les formes quadratiques. Elles ont aussi des applications à la théorie des solitons. Leurs généralisations en algèbre extérieure apparaissent dans la théorie quantique des champs, plus précisément dans la théorie des cordes et des D-branes.
Différence finieEn mathématiques, et plus précisément en analyse, une différence finie est une expression de la forme f(x + b) − f(x + a) (où f est une fonction numérique) ; la même expression divisée par b − a s'appelle un taux d'accroissement (ou taux de variation), et il est possible, plus généralement, de définir de même des différences divisées. L'approximation des dérivées par des différences finies joue un rôle central dans les méthodes des différences finies utilisées pour la résolution numérique des équations différentielles, tout particulièrement pour les problèmes de conditions aux limites.