OrthonormalityIn linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal (or perpendicular along a line) unit vectors. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length. An orthonormal set which forms a basis is called an orthonormal basis. The construction of orthogonality of vectors is motivated by a desire to extend the intuitive notion of perpendicular vectors to higher-dimensional spaces.
Polynôme de Legendrethumb|upright=1.5|Polynômes de Legendre En mathématiques et en physique théorique, les polynômes de Legendre constituent l'exemple le plus simple d'une suite de polynômes orthogonaux. Ce sont des solutions polynomiales P(x), sur l'intervalle x ∈ [–1, 1], de l'équation différentielle de Legendre : dans le cas particulier où le paramètre n est un entier naturel. De façon équivalente, les polynômes de Legendre sont les fonctions propres de l'endomorphisme de R[X] défini par : pour les valeurs propres .
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Convex polytopeA convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue.
Uniform normIn mathematical analysis, the uniform norm (or ) assigns to real- or complex-valued bounded functions f defined on a set S the non-negative number This norm is also called the , the , the , or, when the supremum is in fact the maximum, the . The name "uniform norm" derives from the fact that a sequence of functions \left{f_n\right} converges to f under the metric derived from the uniform norm if and only if f_n converges to f uniformly.
Polynôme de SchurEn mathématiques, les polynômes de Schur, nommés ainsi d'après le mathématicien Issai Schur, sont des polynômes symétriques particuliers, indexés par les partitions d'entiers, et qui généralisent les polynômes symétriques élémentaires et les polynômes symétriques homogènes complets. En théorie des représentations, ce sont les caractères des représentations polynomiales irréductibles du groupe général linéaire. Les polynômes de Schur forment une base de l'espace de tous les polynômes symétriques.
Polynôme de TchebychevEn mathématiques, un polynôme de Tchebychev est un terme de l'une des deux suites de polynômes orthogonaux particulières reliées à la formule de Moivre. Les polynômes de Tchebychev sont nommés ainsi en l'honneur du mathématicien russe Pafnouti Lvovitch Tchebychev. Il existe deux suites de polynômes de Tchebychev, l'une nommée polynômes de Tchebychev de première espèce et notée T et l'autre nommée polynômes de Tchebychev de seconde espèce et notée U (dans les deux cas, l'entier naturel n correspond au degré).
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Espace localement convexeEn mathématiques, un espace localement convexe est un espace vectoriel topologique dont la topologie peut être définie à l'aide d'une famille de semi-normes. C'est une généralisation de la notion d'espace normé. Un espace vectoriel topologique E est dit localement convexe s'il vérifie l'une des deux propriétés équivalentes suivantes : il existe une famille de semi-normes telle que la topologie de E est initiale pour l'ensemble d'applications ; le vecteur nul possède une base de voisinages formée de convexes.