Liaison hydrogènevignette|Liaison hydrogène entre des molécules d'eau. La liaison hydrogène ou pont hydrogène est une force intermoléculaire ou intramoléculaire impliquant un atome d'hydrogène et un atome électronégatif comme l'oxygène, l'azote et le fluor. L'intensité d'une liaison hydrogène est intermédiaire entre celle d'une liaison covalente et celle des forces de van der Waals (en général les liaisons hydrogène sont plus fortes que les interactions de van der Waals).
Produit tensorielEn mathématiques, le produit tensoriel est un moyen commode de coder les objets multilinéaires. Il est utilisé en algèbre, en géométrie différentielle, en géométrie riemannienne, en analyse fonctionnelle et en physique (mécanique des solides, relativité générale et mécanique quantique). Théorème et définition. Soient et deux espaces vectoriels sur un corps commutatif .
Nomenclature des dérivés benzéniquesLa nomenclature des dérivés benzéniques est la partie de nomenclature IUPAC en chimie organique permettant de désigner la position des substituants autres que l'hydrogène sur un hydrocarbure aromatique. Les préfixes grecs ortho (ὀρθός = "droit", "juste"), méta (μετά = "après", "au-delà") et para (παρά = "à côté", "malgré", "contre") désignent la position des substituants secondaires par rapport au substituant principal dans un cycle benzénique polysubstitué.
Energy poverty and cookingOne aspect of energy poverty is lack of access to clean, modern fuels and technologies for cooking. As of 2020, more than 2.6 billion people in developing countries routinely cook with fuels such as wood, animal dung, coal, or kerosene. Burning these types of fuels in open fires or traditional stoves causes harmful household air pollution, resulting in an estimated 3.8 million deaths annually according to the World Health Organization (WHO), and contributes to various health, socio-economic, and environmental problems.
Composé organobroméLes composés organobromés sont des composés organiques qui contiennent au moins une liaison d'un atome de carbone à un de brome (liaison carbone-brome) et plus généralement des composés organiques intégrant au moins un atome de brome qu'il soit lié au carbone ou à l'oxygène (esters de bromate, par ex), au soufre, à l'azote (N-bromosuccinimide), au phosphore, etc. Le plus répandu des organobromés est le bromométhane produit naturellement.
Algèbre tensorielleEn mathématiques, une algèbre tensorielle est une algèbre sur un corps dont les éléments (appelés tenseurs) sont représentés par des combinaisons linéaires de « mots » formés avec des vecteurs d'un espace vectoriel donné. Les seules relations de dépendance linéaire entre ces mots sont induites par les combinaisons linéaires entre les vecteurs. Si l'espace vectoriel sous-jacent est muni d'une base, son algèbre tensorielle s'identifie avec l'algèbre associative unitaire libre engendrée par cette base.
Tenseur (mathématiques)Les tenseurs sont des objets mathématiques issus de l'algèbre multilinéaire permettant de généraliser les scalaires et les vecteurs. On les rencontre notamment en analyse vectorielle et en géométrie différentielle fréquemment utilisés au sein de champs de tenseurs. Ils sont aussi utilisés en mécanique des milieux continus. Le présent article ne se consacre qu'aux tenseurs dans des espaces vectoriels de dimension finie, bien que des généralisations en dimension infinie et même pour des modules existent.
Pivignette|Si le diamètre du cercle est 1, sa circonférence est π. π (pi), appelé parfois constante d’Archimède, est un nombre représenté par la lettre grecque du même nom en minuscule (π). C’est le rapport constant de la circonférence d’un cercle à son diamètre dans un plan euclidien. On peut également le définir comme le rapport de l'aire d'un disque au carré de son rayon. Sa valeur approchée par défaut à moins de 0,5×10 près est en écriture décimale.
Produit tensoriel de deux modulesLe produit tensoriel de deux modules est une construction en théorie des modules qui, à deux modules sur un même anneau commutatif unifère A, assigne un module. Le produit tensoriel est très important dans les domaines de l'analyse fonctionnelle, de la topologie algébrique et de la géométrie algébrique. Le produit tensoriel permet en outre de ramener l'étude d'applications bilinéaires ou multilinéaires à des applications linéaires.
Champ tensorielEn mathématiques, en physique et en ingénierie, un champ tensoriel est un concept très général de quantité géométrique variable. Il est utilisé en géométrie différentielle et dans la théorie des variétés, en géométrie algébrique, en relativité générale, dans l'analyse des contraintes et de la déformation dans les matériaux, et en de nombreuses applications dans les sciences physiques et dans le génie. C'est une généralisation de l'idée de champ vectoriel, lui-même conçu comme un « vecteur qui varie de point en point », à celle, plus riche, de « tenseur qui varie de point en point ».