Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Espace métriqueEn mathématiques et plus particulièrement en topologie, un espace métrique est un ensemble au sein duquel une notion de distance entre les éléments de l'ensemble est définie. Les éléments seront, en général, appelés des points. Tout espace métrique est canoniquement muni d'une topologie. Les espaces métrisables sont les espaces topologiques obtenus de cette manière. L'exemple correspondant le plus à notre expérience intuitive de l'espace est l'espace euclidien à trois dimensions.
Espace completEn mathématiques, un espace métrique complet est un espace métrique dans lequel toute suite de Cauchy converge. La propriété de complétude dépend de la distance. Il est donc important de toujours préciser la distance que l'on prend quand on parle d'espace complet. Intuitivement, un espace est complet s'il « n'a pas de trou », s'il « n'a aucun point manquant ». Par exemple, les nombres rationnels ne forment pas un espace complet, puisque n'y figure pas alors qu'il existe une suite de Cauchy de nombres rationnels ayant cette limite.
Espace pseudo-métriqueEn mathématiques, un espace pseudo-métrique est un ensemble muni d'une pseudo-distance. C'est une généralisation de la notion d'espace métrique. Sur un espace vectoriel, tout comme une norme induit une distance, une semi-norme induit une semi-distance. Pour cette raison, en analyse fonctionnelle et dans les disciplines mathématiques apparentées, l'expression « espace semi-métrique » est utilisée comme synonyme d'espace pseudo-métrique (alors qu'« espace semi-métrique » a un autre sens en topologie).
Système axiomatiqueEn mathématiques, un système axiomatique est un ensemble d'axiomes dont certains ou tous les axiomes peuvent être utilisés logiquement pour dériver des théorèmes. Une théorie consiste en un système axiomatique et tous ses théorèmes dérivés. Un système axiomatique complet est un type particulier de système formel. Une théorie formelle signifie généralement un système axiomatique, par exemple formulé dans la théorie des modèles. Une démonstration formelle est une interprétation complète d'une démonstration mathématique dans un système formel.
Relation binaireEn mathématiques, une relation binaire entre deux ensembles E et F (ou simplement relation entre E et F) est définie par un sous-ensemble du produit cartésien E × F, soit une collection de couples dont la première composante est dans E et la seconde dans F. Cette collection est désignée par le graphe de la relation. Les composantes d'un couple appartenant au graphe d'une relation R sont dits en relation par R. Une relation binaire est parfois appelée correspondance entre les deux ensembles.
Espace de longueurEn mathématiques, un espace de longueur est un espace métrique particulier, qui généralise la notion de variété riemannienne : la distance y est définie par une fonction vérifiant une axiomatique la rendant proche de l'idée concrète de distance. Les espaces de longueur ont été étudiés au début du par et sous le nom d'espaces métriques intrinsèques, et réintroduits plus récemment par Mikhaïl Gromov. Soit X un espace topologique. Une courbe dans X est une application continue , où I est un intervalle de .
Relation (mathématiques)Une relation entre objets mathématiques d'un certain domaine est une propriété qu'ont, ou non, entre eux certains de ces objets ; ainsi la relation d'ordre strict, notée « < », définie sur N l'ensemble des entiers naturels : 1 < 2 signifie que 1 est en relation avec 2 par cette relation, et on sait que 1 n'est pas en relation avec 0 par celle-ci. Une relation est très souvent une relation binaire, définie sur un ensemble comme la relation d'ordre strict sur N, ou entre deux ensembles.
Foundations of geometryFoundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometries. These are fundamental to the study and of historical importance, but there are a great many modern geometries that are not Euclidean which can be studied from this viewpoint. The term axiomatic geometry can be applied to any geometry that is developed from an axiom system, but is often used to mean Euclidean geometry studied from this point of view.
Relation réflexiveEn mathématiques, une relation binaire peut avoir, entre autres propriétés, la réflexivité ou bien l'antiréflexivité (ou irréflexivité). Une relation R sur un ensemble X est dite : réflexive si tout élément de X est R-relié à lui-même :ou encore, si le graphe de R contient la diagonale de X (qui est le graphe de l'égalité) ; antiréflexive (ou irréflexive) si aucun élément de X n'est R-relié à lui-même :ou encore, si son graphe est disjoint de la diagonale de X.