Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Méthode de BrentEn analyse numérique, la méthode de Brent est un algorithme de recherche d'un zéro d'une fonction combinant la méthode de dichotomie, la méthode de la sécante et l’interpolation quadratique inverse. À chaque itération, elle décide laquelle de ces trois méthodes est susceptible d’approcher au mieux le zéro, et effectue une itération en utilisant cette méthode. L'idée principale est d'utiliser la méthode de la sécante ou d'interpolation quadratique inverse parce qu'elles convergent vite, et de revenir à la méthode de dichotomie si besoin est.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Méthode de la sécanteEn analyse numérique, la méthode de la sécante est un algorithme de recherche d'un zéro d'une fonction f. La méthode de la sécante est une méthode comparable à celle de Newton, où l'on remplace par On obtient la relation de récurrence : L'initialisation nécessite deux points x0 et x1, proches, si possible, de la solution recherchée. Il n'est pas nécessaire que x0 et x1 encadrent une racine de f. La méthode de la sécante peut aussi être vue comme une généralisation de la méthode de la fausse position, où les calculs sont itérés.
Méthode de la fausse positionLa méthode de la fausse position ou méthode regula falsi ou méthode des excédents et déficits est au départ une méthode arithmétique. Plus récemment, on appelle ainsi en analyse numérique, un algorithme de recherche d'un zéro d'une fonction, qui combine les possibilités de la méthode de dichotomie et de la méthode de la sécante. De l'Antiquité au , son efficacité a longtemps permis de régler les problèmes linéaires sans recours à l'algèbre. Il en existe deux versions : simple et double, qui établissent la solution cherchée en exploitant le défaut présenté par une (resp.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Modèle linéairevignette|Données aléatoires sous forme de points, et leur régression linéaire. Un modèle linéaire multivarié est un modèle statistique dans lequel on cherche à exprimer une variable aléatoire à expliquer en fonction de variables explicatives X sous forme d'un opérateur linéaire. Le modèle linéaire est donné selon la formule : où Y est une matrice d'observations multivariées, X est une matrice de variables explicatives, B est une matrice de paramètres inconnus à estimer et U est une matrice contenant des erreurs ou du bruit.
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.