Groupe de type de LieEn mathématiques, un groupe de type de Lie G(k) est un groupe (non nécessairement fini) de points rationnels d'un groupe algébrique linéaire réductif G à valeur dans le corps commutatif k. La classification des groupes simples finis montre que les groupes de types de Lie finis forment l'essentiel des groupes finis simples. Des cas particuliers incluent les groupes classiques, les groupes de Chevalley, les groupes de Steinberg et les groupes de Suzuki-Ree.
Groupe MonstreEn mathématiques, le Monstre M ou groupe de Fischer-Griess F est le plus gros des 26 groupes simples sporadiques. Son ordre est 2 × 3 × 5 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 47 × 59 × 71 = ≈ . C'est un groupe simple, ceci signifiant qu'il n'a aucun sous-groupe normal excepté pour le sous-groupe constitué seulement de l'élément identité, et lui-même. Les groupes simples finis ont été complètement classés ; il existe 18 familles infinies dénombrables de groupes simples finis, plus 26 groupes sporadiques qui ne suivent aucun motif apparent.
Sous-groupe compact maximalEn mathématiques, un sous-groupe compact maximal K d'un groupe topologique G est un sous-groupe K qui est un espace compact, dans la topologie du sous-espace, et maximal parmi ces sous-groupes. Les sous-groupes compacts maximaux jouent un rôle important dans la classification des groupes de Lie et en particulier des groupes de Lie semi-simples. Les sous-groupes compacts maximaux de groupes Lie ne sont pas en général unique, mais sont unique à conjugaison près - ils sont essentiellement uniques.
Semisimple Lie algebraIn mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra , if nonzero, the following conditions are equivalent: is semisimple; the Killing form, κ(x,y) = tr(ad(x)ad(y)), is non-degenerate; has no non-zero abelian ideals; has no non-zero solvable ideals; the radical (maximal solvable ideal) of is zero.
Extension de groupesEn mathématiques, plus précisément en théorie des groupes, une extension de groupes est une manière de décrire un groupe en termes de deux groupes « plus petits ». Plus précisément, une extension d'un groupe Q par un groupe N est un groupe G qui s'insère dans une suite exacte courte Autrement dit : G est une extension de Q par N si (à isomorphismes près) N est un sous-groupe normal de G et Q est le groupe quotient G/N. L'extension est dite centrale si N est inclus dans le centre de G.
Groupe abélienEn mathématiques, plus précisément en algèbre, un groupe abélien (du nom de Niels Abel), ou groupe commutatif, est un groupe dont la loi de composition interne est commutative. Vu autrement, un groupe commutatif peut aussi être défini comme un module sur l'anneau commutatif des entiers relatifs ; l'étude des groupes abéliens apparaît alors comme un cas particulier de la théorie des modules. On sait classifier de façon simple et explicite les groupes abéliens de type fini à isomorphisme près, et en particulier décrire les groupes abéliens finis.
Espace compactement engendréEn mathématiques, un espace topologique est dit compactement engendré si c'est un k-espace faiblement Hausdorff. Cette notion intervient en théorie de l'homotopie, dans l'étude des CW-complexes. Un espace X est : un k-espace si toute partie « compactement fermée » de X est fermée (une partie F de X est dite compactement fermée si pour toute application continue f d'un compact K dans X, est fermé dans K) ; faiblement Hausdorff si toute application continue d'un compact dans X est fermée.
Espace séparéEn mathématiques, un espace séparé, dit aussi espace de Hausdorff, est un espace topologique dans lequel deux points distincts quelconques admettent toujours des voisinages disjoints. Cette condition est aussi appelée axiome T2 au sein des axiomes de séparation. L'appellation fait référence à Felix Hausdorff, mathématicien allemand et l'un des fondateurs de la topologie, qui avait inclus cette condition dans sa définition originale d'espace topologique.
Partie relativement compacteEn mathématiques, une partie relativement compacte d'un espace topologique X est un sous-ensemble Y de X inclus dans une partie compacte de X (pour la topologie induite). Rappelons que dans la littérature française, un compact est supposé séparé. Si X est séparé, alors une partie de X est relativement compacte (si et) seulement si son adhérence est compacte. Dans un espace métrisable X, une partie Y est relativement compacte si et seulement si toute suite dans Y possède une sous-suite qui converge dans X.
Théorie des représentations d'un groupe finivignette|Ferdinand Georg Frobenius, fondateur de la théorie de la représentation des groupes. En mathématiques et plus précisément en théorie des groupes, la théorie des représentations d'un groupe fini traite des représentations d'un groupe G dans le cas particulier où G est un groupe fini. Cet article traite de l'aspect mathématique et, de même que l'article de synthèse « Représentations d'un groupe fini », n'aborde que les représentations linéaires de G (par opposition aux représentations projectives ou ).