Loi de PoissonEn théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Stable count distributionIn probability theory, the stable count distribution is the conjugate prior of a one-sided stable distribution. This distribution was discovered by Stephen Lihn (Chinese: 藺鴻圖) in his 2017 study of daily distributions of the S&P 500 and the VIX. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it. Of the three parameters defining the distribution, the stability parameter is most important.
Loi du χ²En statistiques et en théorie des probabilités, la loi du centrée (prononcé « khi carré » ou « khi-deux ») avec k degrés de liberté est la loi de la somme de carrés de k lois normales centrées réduites indépendantes. La loi du est utilisée en inférence statistique et pour les tests statistiques notamment le test du χ2. La loi du χ2 non centrée généralise la loi du . Soient k variables aléatoires X, ... , X indépendantes suivant la loi normale centrée et réduite, c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.
Loi de WeibullEn théorie des probabilités, la loi de Weibull, nommée d'après Waloddi Weibull en 1951, est une loi de probabilité continue. La loi de Weibull est un cas spécial de loi d'extremum généralisée au même titre que la loi de Gumbel ou la loi de Fréchet. Avec deux paramètres (pour x > 0), la densité de probabilité est : où k > 0 est le paramètre de forme et λ > 0 le paramètre d'échelle de la distribution.
Loi de GumbelEn théorie des probabilités, la loi de Gumbel (ou distribution de Gumbel), du nom d'Émil Julius Gumbel, est une loi de probabilité continue. La loi de Gumbel est un cas particulier de la loi d'extremum généralisée au même titre que la loi de Weibull ou la loi de Fréchet. La loi de Gumbel est une approximation satisfaisante de la loi du maximum d'un échantillon de variables aléatoires indépendantes toutes de même loi, dès que cette loi appartient, précisément, au domaine d'attraction de la loi de Gumbel.
Ratio distributionA ratio distribution (also known as a quotient distribution) is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two (usually independent) random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution. An example is the Cauchy distribution (also called the normal ratio distribution), which comes about as the ratio of two normally distributed variables with zero mean.
Résistance des matériauxvignette|Essai de compression sur une éprouvette de béton, une pression croissante est appliquée verticalement sur l'échantillon pendant que deux appareils mesurent les déformations longitudinales et transversales de l'éprouvette. vignette|À l'issue du test, l'éprouvette s'est rompue. Notez la cassure longitudinale. La résistance des matériaux (RDM) est une discipline particulière de la mécanique des milieux continus, permettant le calcul des contraintes et déformations dans les structures des différents matériaux (machines, génie mécanique, bâtiment et génie civil).
Essai de compressionUn essai de compression mesure la résistance à la compression d'un matériau sur une machine d'essais mécaniques suivant un protocole normalisé. Les essais de compression se font souvent sur le même appareil que l'essai de traction mais en appliquant la charge en compression au lieu de l'appliquer en traction. Pendant l'essai de compression, l'échantillon se raccourcit et s'élargit. La déformation relative est « négative » en ce sens que la longueur de l'échantillon diminue.
Loi d'extremum généraliséeEn probabilité et statistique, la loi d'extrémum généralisée est une famille de lois de probabilité continues qui servent à représenter des phénomènes de valeurs extrêmes (minimum ou maximum). Elle comprend la loi de Gumbel, la loi de Fréchet et la loi de Weibull, respectivement lois d'extrémum de type I, II et III. Le théorème de Fisher-Tippett-Gnedenko établit que la loi d'extremum généralisée est la distribution limite du maximum (adéquatement normalisé) d'une série de variables aléatoires indépendantes de même distribution (iid).
Loi stableLa loi stable ou loi de Lévy tronquée, nommée d'après le mathématicien Paul Lévy, est une loi de probabilité utilisée en mathématiques, physique et analyse quantitative (finance de marché). On dit qu'une variable aléatoire réelle est de loi stable si elle vérifie l'une des 3 propriétés équivalentes suivantes : Pour tous réels strictement positifs et , il existe un réel strictement positif et un réel tels que les variables aléatoires et aient la même loi, où et sont des copies indépendantes de .