Topologie induiteEn mathématiques, la topologie induite est une topologie définie sur toute partie Y d'un espace topologique X : c'est la trace sur Y de la topologie sur X. Autrement dit, l'ensemble des ouverts de Y (muni de la topologie induite) est : {O⋂Y | O ouvert de X}. Ou encore : les voisinages dans Y d'un point sont les traces sur Y de ses voisinages dans X. On dit alors que Y est un sous-espace de X. La topologie induite est souvent sous-entendue dans les énoncés de topologie : par exemple, lorsque l'on a un espace topologique X donné, une partie Y de X sera dite compacte si elle est compacte pour la topologie induite par X sur Y.
Salaire minimumLe salaire minimum, ou salaire minimal, est la rémunération minimale qu'un employeur peut légalement accorder à un employé pour un travail. Des abattements au salaire minimal sont parfois prévus par des dispositifs législatifs ou réglementaires. est l'adjectif qualifiant ce qui constitue un minimum. L'expression est critiquée par certains linguistes selon lesquels elle présente le défaut de juxtaposer deux substantifs (le salaire et le minimum) sur le modèle anglophone. Les formulations correctes seraient ici , ou .
Topologie produitEn mathématiques, plus précisément en topologie, la topologie produit est une topologie définie sur un produit d'espaces topologiques. C'est de manière générale la topologie initiale associée aux projections de l'espace produit vers chacun de ses facteurs : autrement dit, c'est la topologie la moins fine rendant continues les projections. Dans le cas d'un produit fini, la topologie produit permet notamment de définir une topologie naturelle sur Rn à partir de celle de R.
Variété rationnelleEn géométrie algébrique, une variété rationnelle est une variété algébrique (intègre) V sur un corps K qui est birationnelle à un espace projectif sur K, c'est-à-dire qu'un certain ouvert dense de V est isomorphe à un ouvert d'un espace projectif. De façon équivalente, cela signifie que son corps de fonctions est isomorphe au corps des fractions rationnelles à d indéterminées K(U, ... , U), l'entier d étant alors égal à la dimension de la variété. Soit V une variété algébrique affine de dimension d définie par un idéal premier ⟨f, .
Variété complèteEn mathématiques, en particulier en géométrie algébrique, une variété algébrique complète est une variété algébrique X, telle que pour toute variété Y le morphisme de projection est une application fermée (c'est-à-dire qu'elle envoie les fermés sur des fermés). Cela peut être vu comme un analogue de la compacité en géométrie algébrique : en effet, un espace topologique X est compact si et seulement si l'application de projection ci-dessus est fermée par rapport aux produits topologiques.
Topologie initialeEn mathématiques, plus précisément en topologie, la topologie initiale, sur un ensemble muni d'une famille d'applications à valeurs dans des espaces topologiques, est la topologie la moins fine pour laquelle toutes ces applications sont continues. Deux cas particuliers importants de topologies initiales sont la topologie induite et la topologie produit. La notion duale est celle de topologie finale. Soient X un ensemble et (fi)i∈I une famille d'applications, chacune définie sur X et à valeurs dans un espace topologique Yi.
Coût d'opportunitéLe coût d'opportunité (de l'anglais opportunity cost), également appelé coût d'option, coût alternatif, coût de substitution, coût de renonciation ou encore coût de renoncement désigne la perte des biens auxquels on renonce lorsqu'on procède à un choix, autrement dit lorsqu'on affecte les ressources disponibles à un usage donné au détriment d'autres choix. C'est le coût d'une chose estimé en termes d'opportunités non réalisées, ou encore la valeur de la meilleure autre option non réalisée.
Quasi-projective varietyIn mathematics, a quasi-projective variety in algebraic geometry is a locally closed subset of a projective variety, i.e., the intersection inside some projective space of a Zariski-open and a Zariski-closed subset. A similar definition is used in scheme theory, where a quasi-projective scheme is a locally closed subscheme of some projective space. An affine space is a Zariski-open subset of a projective space, and since any closed affine subset can be expressed as an intersection of the projective completion and the affine space embedded in the projective space, this implies that any affine variety is quasiprojective.
Matériauvignette|Grandes classes de matériaux. Les matériaux minéraux sont des roches, des céramiques ou des verres. Les matériaux métalliques sont des métaux ou des alliages. Un matériau est toute matière utilisée pour réaliser un objet au sens large. Ce dernier est souvent une pièce d'un sous-ensemble. C'est donc une matière sélectionnée à l'origine en raison de propriétés particulières et mise en œuvre en vue d'un usage spécifique.
ExtremumUn extremum (pluriel extrema ou extremums), ou extrémum (pluriel extrémums), est une valeur extrême, soit maximum, soit minimum. Cette notion est particulièrement utilisée en mathématiques, où l'expression maximo-minimum, introduite par Nicolas de Cues, correspond à partir de Fermat et Leibniz aux extrêmes d'une courbe ou d'une fonction, repérés par le fait que les dérivées s'y annulent. Elle est aussi utilisée en physique, où le principe de moindre action est un principe extrémal ainsi que Euler l'a montré.