Quaternionvignette|Plaque commémorative de la naissance des quaternions sur le pont de Broom (Dublin). En mathématiques, un quaternion est un nombre dans un sens généralisé. Les quaternions englobent les nombres réels et complexes dans un système de nombres plus vastes où la multiplication n'est cette fois-ci plus une loi commutative. Les quaternions furent introduits par le mathématicien irlandais William Rowan Hamilton en 1843. Ils trouvent aujourd'hui des applications en mathématiques, en physique, en informatique et en sciences de l'ingénieur.
Isotropic quadratic formIn mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More explicitly, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. Suppose that (V, q) is quadratic space and W is a subspace of V.
U-invariantIn mathematics, the universal invariant or u-invariant of a field describes the structure of quadratic forms over the field. The universal invariant u(F) of a field F is the largest dimension of an anisotropic quadratic space over F, or ∞ if this does not exist. Since formally real fields have anisotropic quadratic forms (sums of squares) in every dimension, the invariant is only of interest for other fields. An equivalent formulation is that u is the smallest number such that every form of dimension greater than u is isotropic, or that every form of dimension at least u is universal.
Groupe de WittEn mathématiques, un groupe de Witt sur un corps commutatif, nommé d'après Ernst Witt, est un groupe abélien dont les éléments sont représentés par des formes bilinéaires symétriques sur ce corps. Considérons un corps commutatif k. Tous les espaces vectoriels considérés ici seront implicitement supposés de dimension finie. On dit que deux formes bilinéaires symétriques sont équivalentes si on peut obtenir l'une à partir de l'autre en additionnant 0 ou plusieurs copies d'un (forme bilinéaire symétrique non dégénérée en dimension 2 avec un vecteur de norme nulle).
Algèbre de quaternionsEn mathématiques, une algèbre de quaternions sur un corps commutatif K est une K-algèbre de dimension 4 qui généralise à la fois le corps des quaternions de Hamilton et l'algèbre des matrices carrées d'ordre 2. Pour être plus précis, ce sont les algèbres centrales simples sur K de degré 2. Dans cet article, on note K un corps commutatif (de caractéristique quelconque). On appelle algèbre de quaternions sur K toute algèbre (unitaire et associative) A de dimension 4 sur K qui est simple (c'est-à-dire que A et {0} sont les seuls idéaux bilatères) et dont le centre est K.
Algèbre de compositionEn mathématiques, les algèbres de composition sur un corps commutatif sont des structures algébriques qui généralisent simultanément le corps des nombres complexes, le corps non commutatif des quaternions de Hamilton et l'algèbre des octonions de Cayley. Dans cet article, on note K un corps commutatif (de caractéristique quelconque), et les algèbres ne sont pas supposées être associatives ni – a priori du moins – de dimension finie.
Definite quadratic formIn mathematics, a definite quadratic form is a quadratic form over some real vector space V that has the same sign (always positive or always negative) for every non-zero vector of V. According to that sign, the quadratic form is called positive-definite or negative-definite. A semidefinite (or semi-definite) quadratic form is defined in much the same way, except that "always positive" and "always negative" are replaced by "never negative" and "never positive", respectively.
HermitienPlusieurs entités mathématiques sont qualifiées d'hermitiennes en référence au mathématicien Charles Hermite. Produit scalaire#Généralisation aux espaces vectoriels complexesProduit scalaire hermitien Soit E un espace vectoriel complexe. On dit qu'une application f définie sur E x E dans C est une forme sesquilinéaire à gauche si quels que soient les vecteurs X, Y, Z appartenant à E, et a, b des scalaires : f est semi-linéaire par rapport à la première variable et f est linéaire par rapport à la deuxième variable Une telle forme est dite hermitienne (ou à symétrie hermitienne) si de plus : ou, ce qui est équivalent : Elle est dite hermitienne définie positive si pour tout vecteur .
Algèbre à divisionEn mathématiques, et plus précisément en algèbre, une algèbre à division est une algèbre sur un corps avec la possibilité de diviser par un élément non nul (à droite et à gauche). Toutefois, dans une algèbre à division, la multiplication peut ne pas être commutative, ni même associative. Un anneau à division ou corps gauche, comme celui-des quaternions, est une algèbre associative à division sur son centre, ou sur un sous-corps de celui-ci. Soit A un anneau unitaire. L'élément 0 n'est pas inversible, sauf si A est nul.
IsotropieL'isotropie caractérise l’invariance des propriétés physiques d’un milieu en fonction de la direction. Elle qualifie une propriété d'un milieu, ou le milieu directement, la propriété concernée étant sous-entendue. L'isotropie est significative pour une grandeur portée par un vecteur, comme la vitesse ; une grandeur scalaire ne dépend pas d'une direction et est par nature isotrope. Le contraire de l’isotropie est l’anisotropie. Le mot isotrope dérive des termes grecs isos (ἴσος, "égal") et tropos (τρόπος, "conduite, manière").