Publication

Induced and coinduced Banach Lie-Poisson spaces and integrability

Concepts associés (25)
Hamiltonien en théorie des champs
En physique théorique, la théorie des champs hamiltoniens est analogue à la mécanique hamiltonienne classique, appliquée à la théorie des champs. C'est un formalisme de la théorie classique des champs qui se base sur la théorie lagrangienne des champs. Elle a également des applications dans la théorie quantique des champs. L'hamiltonien, pour un système de particules discrètes, est une fonction qui dépend de leurs coordonnées généralisées et de leurs moments conjugués, et éventuellement du temps.
Valeur propre, vecteur propre et espace propre
En mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Noyau de Poisson
En théorie du potentiel, le noyau de Poisson est un opérateur intégral utilisé pour résoudre le problème de Dirichlet en dimension 2. Plus précisément, il donne des solutions à l'équation de Laplace en deux dimensions vérifiant les conditions aux limites de Dirichlet sur le disque unité. Cet opérateur peut se concevoir comme la dérivée de la fonction de Green solution de l'équation de Laplace. Le noyau de Poisson est important en analyse complexe car il est à l'origine de l'intégrale de Poisson qui donne une fonction harmonique définie sur le disque unité prolongement d'une fonction définie sur le cercle unité.
Algèbre associative
vignette|Relations entre certaines structures algébriques. En mathématiques, une algèbre associative (sur un anneau commutatif A) est une des structures algébriques utilisées en algèbre générale. C'est un anneau (ou simplement un pseudo-anneau) B muni d'une structure supplémentaire de module sur A et tel que la loi de multiplication de l'anneau B soit A-bilinéaire. C'est donc un cas particulier d'algèbre sur un anneau. Soit A un anneau commutatif. On dit que (B , + , . , × ) est une A-algèbre associative lorsque : (B , + , .
Analyse (mathématiques)
L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.
Anneau (mathématiques)
vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
Système intégrable
En mécanique hamiltonienne, un système intégrable au sens de Liouville est un système qui possède un nombre suffisant de indépendantes. Lorsque le mouvement est borné, la dynamique est alors périodique ou quasi périodique. Soit un système à N degrés de liberté qui est décrit à l'instant par : les N coordonnées généralisées les N moments conjugués . À chaque instant, les 2N coordonnées définissent un point dans l'espace des phases Γ = R2N. L'évolution dynamique du système sous le flot hamiltonien se traduit par une courbe continue appelée orbite dans cet espace des phases.
Représentation projective
En mathématiques, plus précisément en théorie des représentations, une représentation projective d'un groupe sur un espace vectoriel est un homomorphisme du groupe dans le groupe projectif linéaire . Soit un groupe, un corps et un -espace vectoriel. désigne le groupe général linéaire de . On note le centre de ; il est isomorphe à . est par définition le groupe quotient : . Il existe deux définitions équivalentes d'une représentation projective de sur : un morphisme ; une application telle qu'il existe une fonction , vérifiant : .
Opérateur hamiltonien
L’opérateur de Hamilton, opérateur hamiltonien ou tout simplement hamiltonien est un opérateur mathématique possédant de nombreuses applications dans divers domaines de la physique. D'après Jérôme Pérez, l'opérateur hamiltonien a été développé en 1811 par Joseph-Louis Lagrange alors qu'Hamilton n'avait que 6 ans. Lagrange a explicitement écrit : formule dans laquelle faisait référence à Christiaan Huygens et qu'il aurait appelé Huygensien.
Commutateur (opérateur)
Un commutateur est un opérateur introduit en mathématiques et étendu à la mécanique quantique. En mathématiques, le commutateur donne une idée de la façon dont une loi n'est pas commutative. Il existe plusieurs définitions utilisées en théorie des groupes et en théorie des anneaux. Soit un groupe et soient et deux éléments du groupe. On appelle commutateur de et l'élément du groupe défini par : Remarque : Un commutateur représente en fait le défaut de « permutabilité » de deux éléments du groupe : .

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.