Champ récepteurLe champ récepteur d'un neurone sensoriel ou d'un neurone sensitif est le volume de l'espace qui modifie la réponse de ce neurone, quand un stimulus suffisamment puissant et rapide survient en son sein. De tels champs récepteurs ont été identifiés dans les systèmes visuel, auditif et somatosensoriel. Ainsi, le champ récepteur d'un neurone du système visuel est la portion du champ visuel qui, lorsqu'on présente un stimulus lumineux en son sein, modifie la réponse de ce neurone.
Espace de FréchetUn espace de Fréchet est une structure mathématique d'espace vectoriel topologique satisfaisant certains théorèmes relatifs aux espaces de Banach même en l'absence d'une norme. Cette dénomination fait référence à Maurice Fréchet, mathématicien français ayant participé notamment à la fondation de la topologie et à ses applications en analyse fonctionnelle. C'est dans ce dernier domaine que la structure des espaces de Fréchet se révèle particulièrement utile, notamment en fournissant une topologie naturelle aux espaces de fonctions infiniment dérivables et aux espaces de distributions.
Métamatériaux acoustiquesLes métamatériaux acoustiques sont des matériaux artificiels développés pour contrôler et manipuler les ondes acoustiques pouvant se propager dans des gaz, des liquides ou des solides. Initialement, ce domaine d'étude provient de la recherche de matériaux à indice de réfraction négatifs. Le contrôle des différentes formes d'ondes acoustiques ainsi générées est principalement réalisé grâce au contrôle du module d'élasticité β, de la densité ρ, ou de la .
Photorécepteur (biologie)Suivant le contexte, le terme photorécepteur peut désigner : un neurone sensoriel sensible à la lumière que l'on trouve sur la couche postérieure de la rétine (on parle alors de cellule photoréceptrice ou neurone photorécepteur) ; la molécule qui assure la transduction de l'énergie lumineuse en signal biochimique au sein de la cellule photoréceptrice ; une protéine photoréceptrice ou activée par certaines longueurs d'onde de la lumière, y compris chez les bactéries, champignons et les plantes ; ces dernière
Variation totale d'une fonctionEn mathématiques, la variation totale est liée à la structure (locale ou globale) du codomaine d'une fonction. Pour une fonction continue à valeurs réelles f, définie sur un intervalle [a, b] ⊂ R, sa variation totale sur l'intervalle de définition est une mesure de la longueur d'arc de la projection sur l'axe des ordonnées de la courbe paramétrée (x, f(x)), pour x ∈ [a, b]. L'idée de variation totale pour les fonctions d'une variable réelle a d'abord été introduite par Camille Jordan, afin de démontrer un théorème de convergence pour les séries de Fourier de fonctions discontinues périodiques à variation bornée.
Phase (thermodynamique)thumb|right|Un système composé d'eau et d'huile, à l'équilibre, est composé de deux phases distinctes (biphasique). En thermodynamique, on utilise la notion de phase pour distinguer les différents états possibles d'un système. Selon le contexte et les auteurs, le mot est utilisé pour désigner plusieurs choses, parfois de natures différentes, mais étroitement liées. Si un système thermodynamique est entièrement homogène, physiquement et chimiquement, on dit qu'il constitue une seule phase.
Enveloppe (géométrie)En géométrie différentielle, une famille de courbes planes possède fréquemment une courbe enveloppe. Celle-ci admet deux définitions géométriques traditionnelles, presque équivalentes : l'enveloppe est une courbe tangente à chacune des courbes de la famille ; elle est le lieu des points caractéristiques, points d'intersection de deux courbes infiniment proches. De façon plus précise, l'enveloppe possède une définition analytique, c'est l'ensemble des points critiques de l'application de projection associée à la famille de courbes.
Cône convexeEn algèbre linéaire, un cône convexe est une partie d'un espace vectoriel sur un corps ordonné qui est stable par combinaisons linéaires à coefficients strictement positifs. droite|vignette|Exemple de cône convexe (en bleu clair). À l'intérieur de celui-ci se trouve le cône convexe rouge clair qui est composé des points avec, et étant les points représentés sur la figure. Les courbes en haut à droite indiquent que les régions se prolongent à l'infini.
Fonction à variation bornéeEn analyse, une fonction est dite à variation bornée quand elle vérifie une certaine condition de régularité. Cette condition a été introduite en 1881 par le mathématicien Camille Jordan pour étendre le théorème de Dirichlet sur la convergence des séries de Fourier. Soit f une fonction définie sur un ensemble totalement ordonné T et à valeurs dans un espace métrique (E, d). Pour toute subdivision σ = (x, x, ...
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.