Nombre de Mersenne premiervignette|droite|Le moine français Marin Mersenne (1588-1648) En mathématiques et plus précisément en arithmétique, un nombre de Mersenne est un nombre de la forme 2 − 1 (souvent noté ), où est un entier naturel non nul ; un nombre de Mersenne premier (ou nombre premier de Mersenne) est donc un nombre premier de cette forme. Ces nombres doivent leur nom au religieux érudit et mathématicien français du Marin Mersenne ; mais, près de auparavant, Euclide les utilisait déjà pour étudier les nombres parfaits.
Corps commutatifvignette|Corps commutatif (pour n premier) En mathématiques, un corps commutatif (parfois simplement appelé corps, voir plus bas, ou parfois appelé champ) est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni de deux opérations binaires rendant possibles les additions, soustractions, multiplications et divisions. Plus précisément, un corps commutatif est un anneau commutatif dans lequel l'ensemble des éléments non nuls est un groupe commutatif pour la multiplication.
Factorisation aurifeuillienneEn théorie des nombres, une factorisation aurifeuillienne, nommée d'après Léon-François-Antoine Aurifeuille, est un cas particulier de factorisation algébrique d'entiers provenant d'une factorisation (accidentelle) d'un polynôme cyclotomique. Les polynômes cyclotomiques eux-mêmes sont irréductibles (dans ), mais il peut néanmoins arriver qu'on dispose de factorisations systématiques de leurs valeurs sur certains entiers.
Algorithme de factorisation par crible sur les corps de nombres spécialiséLe crible spécial de corps de nombres (SNFS) est un algorithme spécialisé de factorisation en nombres premiers d'un entier naturel. Lorsque la locution « crible de corps de nombres » est utilisée sans la mention spécial ou général, elle se réfère au GNFS, le crible général de corps de nombres. Le crible spécial de corps de nombres est efficace pour les entiers de la forme r ± s, où r et s sont petits. Il est donc particulièrement recommandé pour factoriser les nombres de Fermat et les nombres de Mersenne.
Nombre algébriqueUn nombre algébrique, en mathématiques, est un nombre complexe solution d'une équation polynomiale à coefficients dans le corps des rationnels (autrement dit racine d'un polynôme non nul à coefficients rationnels). Les nombres entiers et rationnels sont algébriques, ainsi que toutes les racines de ces nombres. Les nombres complexes qui ne sont pas algébriques, comme π et e (théorème de Lindemann-Weierstrass), sont dits transcendants. L'étude de ces nombres, de leurs polynômes minimaux et des corps qui les contiennent fait partie de la théorie de Galois.
FactorisationEn mathématiques, la factorisation consiste à écrire une expression algébrique (notamment une somme), un nombre, une matrice sous la forme d'un produit. Cette transformation peut se faire suivant différentes techniques détaillées ci-dessous. Les enjeux de la factorisation sont très divers : à un niveau élémentaire, le but peut être de ramener la résolution d'une équation à celle d'une équation produit-nul, ou la simplification d'une écriture fractionnaire ; à un niveau intermédiaire, la difficulté algorithmique présumée de la factorisation des nombres entiers en produit de facteurs premiers est à la base de la fiabilité du cryptosystème RSA.
Corps localEn mathématiques, un corps local est un corps commutatif topologique localement compact pour une topologie non discrète. Sa topologie est alors définie par une valeur absolue. Les corps locaux interviennent de façon fondamentale en théorie algébrique des nombres. Si k est un corps fini, le corps k((X)) des séries formelles de Laurent à coefficients dans k est un corps local. Tout complété d'un corps de nombres (ou plus généralement un corps global) pour une valuation non triviale est un corps local.
Extension algébriqueEn mathématiques et plus particulièrement en algèbre, une extension algébrique L sur un corps K est une extension de corps dans laquelle tous les éléments sont algébriques sur K c’est-à-dire sont racines d'un polynôme non nul à coefficients dans K. Dans le cas contraire, l'extension est dite transcendante. Cette approche permet dans un premier temps de pallier les insuffisances de certains corps, par exemple celui des nombres réels quant aux solutions des équations polynomiales.
Corps quasi-algébriquement closEn mathématiques, un corps K est dit quasi-algébriquement clos si tout polynôme homogène P sur K non constant possède un zéro non trivial dès que le nombre de ses variables est strictement supérieur à son degré, autrement dit : si pour tout polynôme P à coefficients dans K, homogène, non constant, en les variables X1, ..., XN et de degré d < N, il existe un zéro non trivial de P sur K, c'est-à-dire des éléments x1, ..., xN de K non tous nuls tels que P(x1, ..., xN) = 0.
Nombre de Fermatthumb|Le mathématicien français Pierre de Fermat (1601-1665) étudia les propriétés des nombres portant maintenant son nom. Un nombre de Fermat est un nombre qui peut s'écrire sous la forme 22n + 1, avec n entier naturel. Le n-ième nombre de Fermat, 22n + 1, est noté Fn. Ces nombres doivent leur nom à Pierre de Fermat, qui émit la conjecture que tous ces nombres étaient premiers. Cette conjecture se révéla fausse, F5 étant composé, de même que tous les suivants jusqu'à F32.