Topologie en basses dimensionsEn mathématiques, la topologie en basses dimensions est la branche de la topologie qui concerne les variétés de dimension inférieure ou égale à quatre. Des sujets représentatifs en sont l'étude des variétés de dimension 3 et la théorie des nœuds et des tresses. Elle fait partie de la topologie géométrique. Un certain nombre d'avancées, à partir des années 1960, ont mis l'accent sur les basses dimensions en topologie.
3-variétéEn mathématiques, une 3-variété est une variété de dimension 3, au sens des variétés topologiques, ou différentielles (en dimension 3, ces catégories sont équivalentes). Certains phénomènes sont liés spécifiquement à la dimension 3, si bien qu'en cette dimension, des techniques particulières prévalent, qui ne se généralisent pas aux dimensions supérieures.
Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
John von NeumannJohn von Neumann (János Lajos Neumann) (, János Lajos Neumann en hongrois), né le à Budapest et mort le à Washington, est un mathématicien et physicien américano-hongrois. Il a apporté d'importantes contributions en mécanique quantique, en analyse fonctionnelle, en logique mathématique, en informatique théorique, en sciences économiques et dans beaucoup d'autres domaines des mathématiques et de la physique. Il a de plus participé aux programmes militaires américains.
4-manifoldIn mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic).
ConjectureEn mathématiques, une conjecture est une assertion pour laquelle on ne connaît pas encore de démonstration, mais que l'on croit fortement être vraie (en l'absence de contre-exemple, ou comme généralisation de résultats démontrés). Une conjecture peut être choisie comme hypothèse ou postulat pour étudier d'autres énoncés. Si une conjecture se révèle indécidable relativement au système d'axiomes dans laquelle elle s'insère, elle peut être érigée en nouvel axiome (ou rejetée par la mise en place d'un nouvel axiome).
Groupe moyennableEn mathématiques, un groupe moyennable (parfois appelé groupe amenable par calque de l'anglais) est un groupe topologique localement compact qu'on peut munir d'une opération de « moyenne » sur les fonctions bornées, invariante par les translations par les éléments du groupe. La définition initiale, donnée à partir d'une mesure (simplement additive) des sous-ensembles du groupe, fut proposée par John von Neumann en 1929 à la suite de son analyse du paradoxe de Banach-Tarski.
Extensivité et intensivité (physique)Les grandeurs extensives et intensives sont des catégories de grandeurs physiques d'un système physique : une propriété est « intensive » si sa valeur ne dépend pas de la taille du système (en particulier, si sa valeur est la même en tout point d'un système homogène) : par exemple, la température ou la pression ; une propriété est « extensive » si elle est proportionnelle à une quantité caractéristique du système : par exemple, la masse ou le volume.
Théorie ergodiquevignette|Flux d'un ensemble statistique dans le potentiel x6 + 4*x3 - 5x**2 - 4x. Sur de longues périodes, il devient tourbillonnant et semble devenir une distribution lisse et stable. Cependant, cette stabilité est un artefact de la pixellisation (la structure réelle est trop fine pour être perçue). Cette animation est inspirée d'une discussion de Gibbs dans son wikisource de 1902 : Elementary Principles in Statistical Mechanics, Chapter XII, p. 143 : « Tendance d'un ensemble de systèmes isolés vers un état d'équilibre statistique ».
Physical propertyA physical property is any property that is measurable, involved in the state of a physical system, whose value represents the intensity on the object's state and behavior. The changes in the physical properties of a system can be used to describe its changes between momentary states. A quantifiable physical property is called physical quantity. Measurable physical quantities are often referred to as observables. Physical properties are often characterized as intensive and extensive properties.