Équation différentielle stochastiqueUne équation différentielle stochastique (EDS) est une généralisation de la notion d'équation différentielle prenant en compte un terme de bruit blanc. Les EDS permettent de modéliser des trajectoires aléatoires, tels des cours de bourse ou les mouvements de particules soumises à des phénomènes de diffusion. Elles permettent aussi de traiter théoriquement ou numériquement des problèmes issus de la théorie des équations aux dérivées partielles.
Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Stochastic partial differential equationStochastic partial differential equations (SPDEs) generalize partial differential equations via random force terms and coefficients, in the same way ordinary stochastic differential equations generalize ordinary differential equations. They have relevance to quantum field theory, statistical mechanics, and spatial modeling. One of the most studied SPDEs is the stochastic heat equation, which may formally be written as where is the Laplacian and denotes space-time white noise.
Générateur de nombres pseudo-aléatoiresUn générateur de nombres pseudo-aléatoires, pseudorandom number generator (PRNG) en anglais, est un algorithme qui génère une séquence de nombres présentant certaines propriétés du hasard. Par exemple, les nombres sont supposés être suffisamment indépendants les uns des autres, et il est potentiellement difficile de repérer des groupes de nombres qui suivent une certaine règle (comportements de groupe). Un algorithme déterministe génère des suites de nombres qui ne peuvent pas satisfaire complètement les critères mathématiques qualifiant les suites aléatoires.
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Méthode de RombergEn analyse numérique, la méthode d'intégration de Romberg est une méthode récursive de calcul numérique d'intégrale, fondée sur l'application du procédé d'extrapolation de Richardson à la méthode des trapèzes. Cette technique d'accélération permet d'améliorer l'ordre de convergence de la méthode des trapèzes, en appliquant cette dernière à des divisions dyadiques successives de l'intervalle d'étude et en formant une combinaison judicieuse.
Delta-2Delta-2 est un procédé d'accélération de la convergence de suites en analyse numérique, popularisé par le mathématicien Alexander Aitken en 1926. C'est l'un des algorithmes d'accélération de la convergence les plus populaires du fait de sa simplicité et de son efficacité. Une première forme de cet algorithme a été utilisée par Seki Kōwa (fin du ) pour calculer une approximation de π par la méthode des polygones d'Archimède.
Diffusion RayleighLa diffusion Rayleigh est un mode de diffusion des ondes, par exemple électromagnétiques ou sonores. Elle opère lorsque la longueur d'onde est beaucoup plus grande que la taille des particules diffusantes. On parle de diffusion élastique, car cela se fait sans variation d'énergie, autrement dit l'onde conserve la même longueur d'onde. Elle est nommée d'après John William Strutt Rayleigh, qui en a fait la découverte.
Générateur de nombres aléatoires matérielEn informatique, un générateur de nombres aléatoires matériel (aussi appelé générateur de nombres aléatoires physique ; en anglais, hardware random number generator ou true random number generator) est un appareil qui génère des nombres aléatoires à partir d'un phénomène physique, plutôt qu'au moyen d'un programme informatique. De tels appareils sont souvent basés sur des phénomènes microscopiques qui génèrent de faibles signaux de bruit statistiquement aléatoires, tels que le bruit thermique ou l'effet photoélectrique.