Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Produit tensorielEn mathématiques, le produit tensoriel est un moyen commode de coder les objets multilinéaires. Il est utilisé en algèbre, en géométrie différentielle, en géométrie riemannienne, en analyse fonctionnelle et en physique (mécanique des solides, relativité générale et mécanique quantique). Théorème et définition. Soient et deux espaces vectoriels sur un corps commutatif .
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Algorithme de recherche de valeur propreUn problème important en analyse numérique consiste à développer des algorithmes efficaces et stables pour trouver les valeurs propres d'une matrice. Ces algorithmes de recherche de valeurs propres peuvent être étendus pour donner les vecteurs propres associés. Valeur propre, vecteur propre et espace propre Pour une matrice carrée A de taille n × n réelle ou complexe, une valeur propre λ et son vecteur propre généralisé associé v sont un couple vérifiant la relation où v est un vecteur colonne n × 1 non nul, I la matrice identité de taille n × n, k un entier positif.
Décomposition d'une matrice en éléments propresEn algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
Équation aux dérivées partielles hyperboliqueEn mathématiques, un problème hyperbolique ou équation aux dérivées partielles hyperbolique est une classe d'équations aux dérivées partielles (EDP) modélisant des phénomènes de propagation, émergeant par exemple naturellement en mécanique. Un archétype d'équation aux dérivées partielles hyperbolique est l'équation des ondes : Les solutions des problèmes hyperboliques possèdent des propriétés ondulatoires. Si une perturbation localisée est faite sur la donnée initiale d'un problème hyperbolique, alors les points de l'espace éloignés du support de la perturbation ne ressentiront pas ses effets immédiatement.
Algèbre linéairevignette|R3 est un espace vectoriel de dimension 3. Droites et plans qui passent par l'origine sont des sous-espaces vectoriels. L’algèbre linéaire est la branche des mathématiques qui s'intéresse aux espaces vectoriels et aux transformations linéaires, formalisation générale des théories des systèmes d'équations linéaires. L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
Combinaison linéaireEn mathématiques, une combinaison linéaire est une expression construite à partir d'un ensemble de termes en multipliant chaque terme par une constante et en ajoutant le résultat. Par exemple, une combinaison linéaire de x et y serait une expression de la forme ax + by, où a et b sont des constantes. Le concept de combinaison linéaire est central en algèbre linéaire et dans des domaines connexes des mathématiques. La majeure partie de cet article traite des combinaisons linéaires dans le contexte d'espace vectoriel sur un corps commutatif, et indique quelques généralisations à la fin de l'article.
Système linéaireUn système linéaire (le terme système étant pris au sens de l'automatique, à savoir un système dynamique) est un objet du monde matériel qui peut être décrit par des équations linéaires (équations linéaires différentielles ou aux différences), ou encore qui obéit au principe de superposition : toute combinaison linéaire des variables de ce système est encore une variable de ce système. Les systèmes non linéaires sont plus difficiles à étudier que les systèmes linéaires.
Produit tensoriel d'algèbresEn mathématique, le produit tensoriel de deux algèbres est une nouvelle algèbre. Soit un anneau commutatif. Soient deux -algèbres (non nécessairement commutatives). Leur structure de -algèbres est donnée par deux morphismes et . On peut les considérer comme des -modules et construire le produit tensoriel . Lorsque et commutent à , c'est-à-dire lorsque pour tout , on a et , on montre qu'il existe une loi de composition interne sur ce produit tensoriel uniquement déterminée par la règle pour tous et .