Processeur graphiqueUn processeur graphique, ou GPU (de l'anglais Graphics Processing Unit), également appelé coprocesseur graphique sur certains systèmes, est une unité de calcul assurant les fonctions de calcul d'image. Il peut être présent sous forme de circuit intégré (ou puce) indépendant, soit sur une carte graphique ou sur la carte mère, ou encore intégré au même circuit intégré que le microprocesseur général (on parle d'un SoC lorsqu'il comporte toutes les puces spécialisées).
General-purpose processing on graphics processing unitsGPGPU est l'abréviation de general-purpose computing on graphics processing units, c'est-à-dire calcul générique sur processeur graphique. L'objectif de tels calculs est de bénéficier de la capacité de traitement parallèle des processeurs graphiques. Avant l'arrivée des GPGPU, le CPU, processeur central de l'ordinateur, traitait la plupart des opérations lourdes en calcul comme les simulations physiques, le rendu hors-ligne pour les films, les calculs de risques pour les institutions financières, la prévision météorologique, l'encodage de fichier vidéo et son Intel avec ses 80 % de parts de marché sur les CPU dominait donc très largement tous les besoins en calcul et pouvait en extraire de substantielles marges.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Équation aux dérivées partielles elliptiqueEn mathématiques, une équation aux dérivées partielles linéaire du second ordre, dont la forme générale est donnée par : est dite elliptique en un point donné x de l'ouvert U si la matrice carrée symétrique des coefficients du second ordre admet des valeurs propres non nulles et de même signe. En physique, les équations de Laplace, et de Poisson pour le potentiel électrostatique respectivement dans le vide et pour la distribution de charges sont de type elliptique.
Équation aux dérivées partielles hyperboliqueEn mathématiques, un problème hyperbolique ou équation aux dérivées partielles hyperbolique est une classe d'équations aux dérivées partielles (EDP) modélisant des phénomènes de propagation, émergeant par exemple naturellement en mécanique. Un archétype d'équation aux dérivées partielles hyperbolique est l'équation des ondes : Les solutions des problèmes hyperboliques possèdent des propriétés ondulatoires. Si une perturbation localisée est faite sur la donnée initiale d'un problème hyperbolique, alors les points de l'espace éloignés du support de la perturbation ne ressentiront pas ses effets immédiatement.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Mémoire viveLa mémoire vive, parfois abrégée avec l'acronyme anglais RAM (Random Access Memory), est la mémoire informatique dans laquelle peuvent être enregistrées les informations traitées par un appareil informatique. On écrit mémoire vive par opposition à la mémoire morte. L'acronyme RAM date de 1965. Les caractéristiques actuelles de cette mémoire sont : Sa fabrication à base de circuits intégrés ; L'accès direct à l'information par opposition à un accès séquentiel ; Sa rapidité d'accès, essentielle pour fournir rapidement les données au processeur ; Sa volatilité, qui entraîne une perte de toutes les données en mémoire dès qu'elle cesse d'être alimentée en électricité.
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.