SymplectomorphismeEn géométrie symplectique, un symplectomorphisme est un isomorphisme de variétés symplectiques. Soient et deux variétés symplectiques. Une application différentiable est appelée morphisme symplectique lorsque, pour tout , la différentielle est une isométrie linéaire entre espaces vectoriels symplectiques. Autrement dit : Si , comme est non dégénérée, les différentielles sont des isomorphismes linéaires, et de fait, par le théorème d'inversion locale, est un difféomorphisme local.
Géométrie symplectiqueLa géométrie symplectique est un domaine de la recherche mathématique, s'intéressant à l'origine à une formulation mathématique naturelle de la mécanique classique et développé avec une notion d'entrelacement entre la géométrie différentielle et les systèmes dynamiques, avec des applications en géométrie algébrique, en géométrie riemannienne et en géométrie de contact. Formellement, elle consiste en l'étude des 2-formes différentielles fermées non dégénérées — appelées formes symplectiques — sur les variétés différentielles.
Variété symplectiqueEn mathématiques, une variété symplectique est une variété différentielle munie d'une forme différentielle de degré 2 fermée et non dégénérée, appelée forme symplectique. L'étude des variétés symplectiques relève de la géométrie symplectique. Les variétés symplectiques apparaissent dans les reformulations analytiques abstraites de la mécanique classique utilisant la notion de fibré cotangent d'une variété, notamment dans la reformulation hamiltonnienne, où les configurations d'un système forment une variété dont le fibré cotangent décrit l'espace des phases du système.
Mécanique hamiltonienneLa mécanique hamiltonienne est une reformulation de la mécanique newtonienne. Son formalisme a facilité l'élaboration théorique de la mécanique quantique. Elle a été formulée par William Rowan Hamilton en 1833 à partir des équations de Lagrange, qui reformulaient déjà la mécanique classique en 1788. En mécanique lagrangienne, les équations du mouvement d'un système à N degrés de liberté dépendent des coordonnées généralisées et des vitesses correspondantes , où .
Champ de vecteurs hamiltonienEn géométrie différentielle et plus précisément en géométrie symplectique, dans l'étude des variétés symplectiques et des variétés de Poisson, un champ de vecteurs hamiltonien est un champ de vecteurs associé à une fonction réelle différentiable appelée hamiltonien de manière semblable au champ de vecteurs gradient en géométrie riemannienne. Cependant, une des différences fondamentales est que le hamiltonien est constant le long de ses courbes intégrales. Le nom vient du mathématicien et physicien William Rowan Hamilton.
Théorème adiabatiqueLe théorème adiabatique est un concept important en mécanique quantique. Sa forme originelle, énoncée en 1928 par Max Born et Vladimir Fock, peut être énoncée de la manière suivante : Un système physique est maintenu dans son état propre instantané si une perturbation donnée agit sur lui suffisamment lentement et s'il y a un intervalle significatif entre la valeur propre et le reste du spectre de l'hamiltonien. Il peut ne pas être immédiatement compris à partir de cette formulation que le théorème adiabatique est, en fait, un concept extrêmement intuitif.
Hamiltonien en théorie des champsEn physique théorique, la théorie des champs hamiltoniens est analogue à la mécanique hamiltonienne classique, appliquée à la théorie des champs. C'est un formalisme de la théorie classique des champs qui se base sur la théorie lagrangienne des champs. Elle a également des applications dans la théorie quantique des champs. L'hamiltonien, pour un système de particules discrètes, est une fonction qui dépend de leurs coordonnées généralisées et de leurs moments conjugués, et éventuellement du temps.
Application momentEn géométrie symplectique, aux actions hamiltoniennes d'un groupe de Lie sur une variété symplectique est associée une application G-équivariante , appelée l'application moment. En un certain sens, elle généralise le moment rencontré en mécanique classique. L'application moment est définie par : où est le champ de vecteurs correspondant à l'action infinitésimale de . Action de groupe Action hamiltonienne Symplectomorphisme Difféomorphisme hamiltonien Contribution à l'étude de l'application moment, EL AZIRI Abdelhamid ; MARLE Charles-Miche Convexity properties of hamiltonian group actions, Principal Guillemin, Victor W.
Forme volumeEn géométrie différentielle, une forme volume généralise la notion de déterminant aux variétés différentielles. Elle définit une mesure sur la variété, permet le calcul des volumes généralisés, et la définition générale des orientations. Une forme volume se définit comme une forme différentielle de degré maximal, nulle en aucun point. Pour qu'une variété admette une forme volume, il faut et il suffit qu'elle soit orientable. Dans ce cas, il en existe une infinité.
Variété de PoissonEn géométrie, une structure de Poisson sur une variété différentielle est un crochet de Lie (appelé crochet de Poisson dans ce cas) sur l'algèbre des fonctions lisses de à valeurs réelles, vérifiant formule de Leibniz En d'autres termes, une structure de Poisson est structure d'algèbre de Lie sur l'espace vectoriel des fonctions lisses sur de sorte que est un champ de vecteurs pour toute fonction lisse , appelé champ de vecteurs hamiltonien associé à . Soit une variété différentielle.