Loi de StokesLa loi de Stokes, nommée en l'honneur de George Stokes (1819 – 1903), est une loi donnant la force de traînée hydrodynamique s'exerçant sur une sphère en déplacement dans un fluide. Si le nombre de Reynolds est très inférieur à 1 (écoulement rampant) et si la sphère est suffisamment loin de tout autre corps, de tout obstacle ou paroi latérale (on considère une paroi éloignée d'au moins dix fois le rayon de la sphère), alors la force de traînée hydrodynamique qui s'exerce sur une sphère de diamètre est : où est la viscosité dynamique du fluide (en ) et le diamètre de la sphère.
Mathématiques discrètesLes mathématiques discrètes, parfois appelées mathématiques finies, sont l'étude des structures mathématiques fondamentalement discrètes, par opposition aux structures continues. Contrairement aux nombres réels, qui ont la propriété de varier "en douceur", les objets étudiés en mathématiques discrètes (tels que les entiers relatifs, les graphes simples et les énoncés en logique) ne varient pas de cette façon, mais ont des valeurs distinctes séparées.
Interpolation polynomialeEn mathématiques, en analyse numérique, l'interpolation polynomiale est une technique d'interpolation d'un ensemble de données ou d'une fonction par un polynôme. En d'autres termes, étant donné un ensemble de points (obtenu, par exemple, à la suite d'une expérience), on cherche un polynôme qui passe par tous ces points, p(xi) = yi, et éventuellement vérifie d'autres conditions, de degré si possible le plus bas. Cependant, dans le cas de l'interpolation lagrangienne, par exemple, le choix des points d'interpolation est critique.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Différences diviséesEn mathématiques, les différences divisées correspondent à une discrétisation des dérivées successives d'une fonction. Ce sont des quantités définies et calculées de manière récursive en généralisant la formule du taux d'accroissement. Elles sont utilisées en particulier en interpolation newtonienne. Étant donnés points d'abscisses distinctes, les différences divisées sont définies de la manière suivante : Pour toute fonction telle que , on note parfois la différence divisée .
Sous-espace de KrylovEn algèbre linéaire, le sous-espace de Krylov d'ordre r associé à une matrice de taille et un vecteur b de dimension n est le sous-espace vectoriel linéaire engendré par les vecteurs images de b par les r premières puissances de A (à partir de ), c'est-à-dire Le concept porte le nom du mathématicien appliqué et ingénieur naval russe Alexei Krylov, qui a publié un article à ce sujet en 1931. Les vecteurs sont linéairement indépendants tant que , et . Ainsi, désigne la dimension maximale d'un sous-espace de Krylov.
Variable discrèteIn mathematics and statistics, a quantitative variable may be continuous or discrete if they are typically obtained by measuring or counting, respectively. If it can take on two particular real values such that it can also take on all real values between them (even values that are arbitrarily close together), the variable is continuous in that interval. If it can take on a value such that there is a non-infinitesimal gap on each side of it containing no values that the variable can take on, then it is discrete around that value.
Théorie des écoulements à potentiel de vitessevignette|Diagrammes plan d'écoulement des fluides autour d'un cylindre et d'un profil d'aile En mécanique des fluides, la théorie des écoulements à potentiel de vitesse est une théorie des écoulements de fluide où la viscosité est négligée. Elle est très employée en hydrodynamique. La théorie se propose de résoudre les équations de Navier-Stokes dans les conditions suivantes : l'écoulement est stationnaire le fluide n'est pas visqueux il n'y a pas d'action externe (flux de chaleur, électromagnétisme, gravité .
Nombre de StrouhalLe nombre de Strouhal est un nombre sans dimension décrivant les mécanismes de circulation oscillante. Ce nombre porte le nom de Vincent Strouhal, physicien tchèque. Physiquement, il représente le rapport du temps d'advection et du temps caractéristique de l'instationnarité. Si , l'écoulement est dit quasi stationnaire. En 1878, en étudiant les notes émises par un fil tendu soumis au vent, le physicien tchèque Vincent Strouhal fut le premier à remarquer la relation entre la fréquence du son et le quotient de la vitesse du vent par le diamètre du fil.