Calotte sphériquethumb|Une sphère et les deux calottes sphériques découpées par un plan En géométrie, une calotte sphérique est une portion de sphère délimitée par un plan. C'est un cas particulier de zone sphérique. Lorsque le plan passe par le centre de la sphère, on obtient un hémisphère. Cette surface de révolution sert de délimitant à deux types de solides : le secteur sphérique, portion de boule découpée par un cône le segment sphérique à une base, portion de boule découpée par un plan.
CercleEn géométrie euclidienne, un cercle est une courbe plane fermée constituée de points situés à égale distance d'un point nommé centre. Cette distance est appelée rayon du cercle. Dans le plan euclidien, il s'agit du « rond » qui est associé en français au terme de cercle. Dans un plan non euclidien ou dans le cas de la définition d'une distance non euclidienne, la forme peut être plus complexe. Dans un espace de dimension quelconque, l'ensemble des points placés à une distance constante d'un centre est appelé sphère.
Quaternion hyperboliqueL'algèbre des quaternions hyperboliques est un objet mathématique promu à partir de 1890 par . L'idée fut mise à l'écart, à cause de la non-associativité de la multiplication, mais elle est reprise dans l'espace de Minkowski. Comme les quaternions de Hamilton, c'est une algèbre réelle de dimension 4. Une combinaison linéaire : est un quaternion hyperbolique si et sont des nombres réels, et les unités sont telles que : Soit : La différence entre les quaternions et les quaternions hyperboliques est donc la valeur du carré .
CoquaternionEn mathématiques et en algèbre abstraite, un coquaternion est une idée mise en avant par James Cockle en 1849. Comme les quaternions de Hamilton inventés en 1843, ils forment un espace vectoriel réel à quatre dimensions muni d'une opération multiplicative. À la différence de l'algèbre des quaternions, les coquaternions peuvent avoir des diviseurs de zéro, des éléments idempotents ou nilpotents. L'ensemble forme une base. Les produits de coquaternion de ces éléments sont Avec ces produits l'ensemble est isomorphe au groupe diédral d'un carré.
Tangente à un cercleEn géométrie plane euclidienne, une tangente au cercle est une droite qui touche un cercle en un point unique, sans passer par l'intérieur du cercle. Les droites tangents aux cercles sont le sujet de nombreux théorèmes, et apparaissent dans de nombreuses constructions à la règle et au compas et des preuves. Une propriété souvent utilisée dans ces théorèmes est que la tangente en un point du cercle est orthogonale au rayon du cercle passant par le point de contact.
Algèbre de quaternionsEn mathématiques, une algèbre de quaternions sur un corps commutatif K est une K-algèbre de dimension 4 qui généralise à la fois le corps des quaternions de Hamilton et l'algèbre des matrices carrées d'ordre 2. Pour être plus précis, ce sont les algèbres centrales simples sur K de degré 2. Dans cet article, on note K un corps commutatif (de caractéristique quelconque). On appelle algèbre de quaternions sur K toute algèbre (unitaire et associative) A de dimension 4 sur K qui est simple (c'est-à-dire que A et {0} sont les seuls idéaux bilatères) et dont le centre est K.
Spherical basisIn pure and applied mathematics, particularly quantum mechanics and computer graphics and their applications, a spherical basis is the basis used to express spherical tensors. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. While spherical polar coordinates are one orthogonal coordinate system for expressing vectors and tensors using polar and azimuthal angles and radial distance, the spherical basis are constructed from the standard basis and use complex numbers.
Groupe des quaternionsEn mathématiques et plus précisément en théorie des groupes, le groupe des quaternions est l'un des deux groupes non abéliens d'ordre 8. Il admet une représentation réelle irréductible de degré 4, et la sous-algèbre des matrices 4×4 engendrée par son image est un corps gauche qui s'identifie au corps des quaternions de Hamilton. Le groupe des quaternions est souvent désigné par le symbole Q ou Q8 et est écrit sous forme multiplicative, avec les 8 éléments suivants : Ici, 1 est l'élément neutre, et pour tout a dans Q.
Unit sphereIn mathematics, a unit sphere is simply a sphere of radius one around a given center. More generally, it is the set of points of distance 1 from a fixed central point, where different norms can be used as general notions of "distance". A unit ball is the closed set of points of distance less than or equal to 1 from a fixed central point. Usually the center is at the origin of the space, so one speaks of "the unit ball" or "the unit sphere". Special cases are the unit circle and the unit disk.
Controverse sur la paternité de la relativitéLa controverse sur la paternité de la relativité porte sur la remise en cause de l'attribution de la relativité restreinte, de la relativité générale et de l'équation E=mc à Albert Einstein. Cette attribution est généralement admise, ce qui ne signifie pas que les savants qui ont travaillé sur ces sujets et ont apporté des avancées substantielles à la même époque soient pour autant ignorés dans les présentations de ces théories. Comprendre l'importance du rôle de chacun est une question délicate d'histoire des sciences et qui fait souvent l'objet de débats.