Représentation irréductibleEn mathématiques et plus précisément en théorie des représentations, une représentation irréductible est une représentation non nulle qui n'admet qu'elle-même et la représentation nulle comme sous-représentations. Le présent article traite des représentations d'un groupe. Le théorème de Maschke démontre que dans de nombreux cas, une représentation est somme directe de représentations irréductibles. Dans le cas des groupes finis, les informations liés aux représentations irréductibles sont encodées dans la table de caractères du groupe.
Groupe abélien de type finiEn mathématiques, un groupe abélien de type fini est un groupe abélien qui possède une partie génératrice finie. Autrement dit : c'est un module de type fini sur l'anneau Z des entiers relatifs. Par conséquent, les produits finis, les quotients, mais aussi les sous-groupes des groupes abéliens de type fini sont eux-mêmes de type fini. Un théorème de structure des groupes abéliens de type fini permet d'expliciter la liste complète de ces groupes à isomorphisme près ; il montre notamment que tout groupe abélien de type fini est un produit fini de groupes monogènes.
Caractéristique d'un anneauEn algèbre, la caractéristique d'un anneau (unitaire) A est par définition l'ordre pour la loi additive de l'élément neutre de la loi multiplicative si cet ordre est fini ; si cet ordre est infini, la caractéristique de l'anneau est par définition zéro. On note, pour un anneau unitaire (A, +, ×), 0A l'élément neutre de « + » et 1A celui de « × ». La caractéristique d'un anneau A est donc le plus petit entier n > 0 tel que si un tel entier existe. Dans le cas contraire (autrement dit si 1A est d'ordre infini), la caractéristique est nulle.
Nombre premier de WilsonEn arithmétique, un nombre premier de Wilson est un nombre premier p tel que p divise (p – 1)! + 1, où ! désigne la fonction factorielle ; comparer ceci avec le théorème de Wilson, qui énonce que tout nombre premier p divise (p – 1)! + 1. Les seuls nombres premiers de Wilson connus sont 5, 13, et 563 () ; si d'autres existent, ils doivent être plus grands que 2 × 10. On conjecture qu'il existe une infinité de nombres premiers de Wilson, et que le nombre de nombres premiers de Wilson dans un intervalle [x, y] est d'environ log(log(y)/log(x)).
Groupe quotientDans l'étude des groupes, le quotient d'un groupe est une opération classique permettant la construction de nouveaux groupes à partir d'anciens. À partir d'un groupe G et d'un sous-groupe H de G, on peut définir une loi de groupe sur l'ensemble G/H des classes de G suivant H, à condition que le sous-groupe H soit normal, c'est-à-dire que les classes à droite soient égales aux classes à gauche (gH = Hg). Étant donné un élément g de G, nous définissons la classe à gauche gH = { gh | h ∈ H }.
SurjectionEn mathématiques, une surjection ou application surjective est une application pour laquelle tout élément de l'ensemble d'arrivée a au moins un antécédent, c'est-à-dire est d'au moins un élément de l'ensemble de départ. Il est équivalent de dire que l' est égal à l'ensemble d'arrivée. Il est possible d'appliquer l'adjectif « surjectif » à une fonction (voire à une correspondance) dont le domaine de définition n'est pas tout l'ensemble de départ, mais en général le terme « surjection » est réservé aux applications (qui sont définies sur tout leur ensemble de départ), auxquelles nous nous limiterons dans cet article (pour plus de détails, voir le paragraphe « Fonction et application » de l'article « Application »).
QuotientEn mathématiques, un quotient est le résultat d'une division. Le quotient existe ou pas selon l'ensemble de nombres considéré. Dans les entiers naturels, le quotient de par n'existe que si est un multiple de . On parle alors de quotient euclidien, puisqu'il résulte d'une division euclidienne. Le mot quotient s'emploie parfois pour fraction.
Modulo (opération)En informatique, l'opération modulo, ou opération mod, est une opération binaire qui associe à deux entiers naturels le reste de la division euclidienne du premier par le second, le reste de la division de a par n (n ≠ 0) est noté a mod n (a % n dans certains langages informatiques). Ainsi 9 mod 4 = 1, car 9 = 2×4 + 1 et 0 ≤ 1 < 4, 9 mod 3 = 0, ... L'opération peut être étendue aux entiers relatifs, voire aux nombres réels, mais alors les langages de programmation peuvent diverger, en particulier a mod n n'est plus forcément positif ou nul.
HomomorphismIn algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός () meaning "same" and μορφή () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).
ÉpimorphismeEn mathématiques, le terme « épimorphisme » peut avoir deux sens. 1) En théorie des catégories, un épimorphisme (aussi appelé epi) est un morphisme f : X → Y qui est simplifiable à droite de la manière suivante: g1 o f = g2 o f implique g1 = g2 pour tout morphisme g1, g2 : Y → Z. Suivant ce diagramme, on peut voir les épimorphismes comme des analogues aux fonctions surjectives, bien que ce ne soit pas exactement la même chose. Le dual d'un épimorphisme est un monomorphisme (c'est-à-dire qu'un épimorphisme dans une catégorie C est un monomorphisme dans la catégorie duale Cop).