Algèbre linéairevignette|R3 est un espace vectoriel de dimension 3. Droites et plans qui passent par l'origine sont des sous-espaces vectoriels. L’algèbre linéaire est la branche des mathématiques qui s'intéresse aux espaces vectoriels et aux transformations linéaires, formalisation générale des théories des systèmes d'équations linéaires. L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
Application linéaireEn mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels qui respecte l'addition des vecteurs et la multiplication scalaire, et préserve ainsi plus généralement les combinaisons linéaires. L’expression peut s’utiliser aussi pour un morphisme entre deux modules sur un anneau, avec une présentation semblable en dehors des notions de base et de dimension. Cette notion étend celle de fonction linéaire en analyse réelle à des espaces vectoriels plus généraux.
Indépendance linéaireEn algèbre linéaire, étant donné une famille de vecteurs d'un même espace vectoriel, les vecteurs de la famille sont linéairement indépendants, ou forment une famille libre, si la seule combinaison linéaire de ces vecteurs qui soit égale au vecteur nul est celle dont tous les coefficients sont nuls. Cela revient à dire qu'aucun des vecteurs de la famille n'est combinaison linéaire des autres. Dans le cas où des vecteurs ne sont pas linéairement indépendants, on dit qu'ils sont linéairement dépendants, ou qu'ils forment une famille liée.
Application affineEn géométrie, une application affine est une application entre deux espaces affines qui est compatible avec leur structure. Cette notion généralise celle de fonction affine de R dans R (), sous la forme , où est une application linéaire et est un point. Une bijection affine (qui est un cas particulier de transformation géométrique) envoie les sous-espaces affines, comme les points, les droites ou les plans, sur le même type d'objet géométrique, tout en préservant la notion de parallélisme.
Calcul réversibleLe calcul réversible est un domaine de l'informatique qui s'intéresse au fait de pouvoir inverser (physiquement ou logiquement) un calcul. Il s'agit d'un domaine transversal, qui a des applications allant de l'architecture matérielle à l'algorithmique répartie en passant par le calcul quantique. D'un point de vue physique, cela implique que ce calcul n'implique pas de phénomène dissipatif conduisant à une augmentation de l'entropie ; bien qu'il soit physiquement impossible d'atteindre cet objectif du fait du second principe de la thermodynamique, s'en rapprocher permet l'augmentation de l'efficacité des processeurs.
Forme linéaireEn algèbre linéaire, une forme linéaire sur un espace vectoriel est une application linéaire sur son corps de base. En dimension finie, elle peut être représentée par une matrice ligne qui permet d’associer à son noyau une équation cartésienne. Dans le cadre du calcul tensoriel, une forme linéaire est aussi appelée covecteur, en lien avec l’action différente des matrices de changement de base.
Espace affineEn géométrie, la notion d'espace affine généralise la notion d'espace issue de la géométrie euclidienne en omettant les notions d'angle et de distance. Dans un espace affine, on peut parler d'alignement, de parallélisme, de barycentre. Sous la forme qui utilise des rapports de mesures algébriques, qui est une notion affine, le théorème de Thalès et le théorème de Ceva sont des exemples de théorèmes de géométrie affine plane réelle (c'est-à-dire n'utilisant que la structure d'espace affine du plan réel).
Système d'équations linéairesEn mathématiques et particulièrement en algèbre linéaire, un système d'équations linéaires est un système d'équations constitué d'équations linéaires qui portent sur les mêmes inconnues. Par exemple : Le problème est de trouver les valeurs des inconnues , et qui satisfassent les trois équations simultanément. La résolution des systèmes d'équations linéaires appartient aux problèmes les plus anciens dans les mathématiques et ceux-ci apparaissent dans beaucoup de domaines, comme en traitement numérique du signal, en optimisation linéaire, ou dans l'approximation de problèmes non linéaires en analyse numérique.
Groupe affineLes automorphismes d'un espace affine A constituent un groupe appelé groupe affine de A et noté GA(A). En notant E l'espace vectoriel qui dirige A, l'application qui à tout automorphisme u de A fait correspondre l'automorphisme f de E associé à u est un morphisme du groupe affine GA(A) dans le groupe linéaire GL(E). Son noyau forme le groupe des translations. GA(A) est isomorphe au produit semi-direct du groupe additif de E par GL(E). Il est donc engendré par les translations, les transvections et les dilatations.
LinéaritéLe concept de linéarité est utilisé dans le domaine des mathématiques et dans le domaine de la physique, et par extension dans le langage courant. Les premiers exemples de situations où intervient la linéarité sont les situations de proportionnalité constante entre deux variables : le graphe représentant une variable en fonction de l'autre forme alors une ligne droite qui passe par l'origine. Il ne faut cependant pas confondre linéarité et proportionnalité, car la proportionnalité n'est qu'un cas particulier de la linéarité.