Groupe abélienEn mathématiques, plus précisément en algèbre, un groupe abélien (du nom de Niels Abel), ou groupe commutatif, est un groupe dont la loi de composition interne est commutative. Vu autrement, un groupe commutatif peut aussi être défini comme un module sur l'anneau commutatif des entiers relatifs ; l'étude des groupes abéliens apparaît alors comme un cas particulier de la théorie des modules. On sait classifier de façon simple et explicite les groupes abéliens de type fini à isomorphisme près, et en particulier décrire les groupes abéliens finis.
Signature d'une permutationEn mathématiques, une permutation de support fini est dite paire si elle présente un nombre pair d'inversions, impaire sinon. La signature d'une permutation vaut 1 si celle-ci est paire, –1 si elle est impaire. L'application signature, du groupe symétrique dans le groupe ({–1, 1}, ×), est un morphisme, c'est-à-dire qu'elle vérifie une propriété analogue à la règle des signes. Toute permutation se décompose en un produit de transpositions.
Permutation circulaireEn mathématiques, une permutation circulaire ou cycle est un cas particulier de permutation. Une permutation circulaire agit comme un décalage circulaire pour un certain nombre d'éléments, et laisse tous les autres inchangés. Les permutations circulaires permettent d'illustrer le fonctionnement général des permutations, puisqu'une permutation quelconque se décompose en un produit de cycles fonctionnant de manière indépendante. Soit un entier k ≥ 2. Une permutation est un k-cycle, ou permutation circulaire de longueur k, s'il existe des éléments a1, .
Groupe algébriqueEn géométrie algébrique, la notion de groupe algébrique est un équivalent des groupes de Lie en géométrie différentielle ou complexe. Un groupe algébrique est une variété algébrique munie d'une loi de groupe compatible avec sa structure de variété algébrique. Un groupe algébrique sur un corps (commutatif) K est une variété algébrique sur munie : d'un morphisme de K-variétés algébriques (appelé aussi multiplication) .
Groupe résolubleEn mathématiques, un groupe résoluble est un groupe qui peut être construit à partir de groupes abéliens par une suite finie d'extensions. Théorème d'Abel (algèbre) La théorie des groupes tire son origine de la recherche de solutions générales (ou de leur absence) pour les racines des polynômes de degré 5 ou plus. Le concept de groupe résoluble provient d'une propriété partagée par les groupes d'automorphismes des polynômes dont les racines peuvent être exprimées en utilisant seulement un nombre fini d'opérations élémentaires (racine n-ième, addition, multiplication, ).
Entier de Gaussthumb|Carl Friedrich Gauss. En mathématiques, et plus précisément, en théorie algébrique des nombres, un entier de Gauss est un nombre complexe dont la partie réelle et la partie imaginaire sont des entiers relatifs. Il s'agit formellement d'un élément de l'anneau des entiers quadratiques de l'extension quadratique des rationnels de Gauss L'ensemble des entiers de Gauss possède une structure forte. Comme tous les ensembles d'entiers algébriques, muni de l'addition et de la multiplication ordinaire des nombres complexes, il forme un anneau intègre, généralement noté , désignant ici l'unité imaginaire.
Groupe classiqueEn mathématiques, les groupes classiques sont différentes familles de groupes de transformations liées à l'algèbre linéaire, principalement les groupes linéaires, orthogonaux, symplectiques et unitaires. Ces groupes peuvent aussi être présentés comme groupes de matrices inversibles, et des quotients de ceux-ci. Les groupes matrices carrées d'ordre n (GL(n, R)), GL(n, C)), le groupe des matrices orthogonales d'ordre n (O(n)) et le groupe des matrices unitaires d'ordre n (U(n)) sont des exemples explicites de groupes classiques.
PermutationEn mathématiques, la notion de permutation exprime l'idée de réarrangement d'objets discernables. Une permutation d'objets distincts rangés dans un certain ordre correspond à un changement de l'ordre de succession de ces objets. La permutation est une des notions fondamentales en combinatoire, c'est-à-dire pour des problèmes de dénombrement et de probabilités discrètes. Elle sert ainsi à définir et à étudier le carré magique, le carré latin, le sudoku, ou le Rubik's Cube.
Entier algébriqueEn mathématiques, un entier algébrique est un élément d'un corps de nombres qui y joue un rôle analogue à celui d'un entier relatif dans le corps des nombres rationnels. L'étude des entiers algébriques est à la base de l'arithmétique des corps de nombres, et de la généralisation dans ces corps de notions comme celles de nombre premier ou de division euclidienne. Par définition, un entier algébrique est une racine d'un polynôme unitaire à coefficients dans Z.
Inégalité (mathématiques)En mathématiques, une inégalité est une formule reliant deux expressions numériques avec un symbole de comparaison. Une inégalité stricte compare nécessairement deux valeurs différentes tandis qu’une inégalité large reste valable en cas d’égalité. Contrairement à une interprétation étymologique, la négation d’une égalité (avec le symbole ≠) n’est pas considérée comme une inégalité et se traite différemment. Les inégalités permettent d’encadrer ou de distinguer des valeurs réelles, de préciser une approximation, de justifier le comportement asymptotique d’une série ou d’une intégrale.