General topologyIn mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are continuity, compactness, and connectedness: Continuous functions, intuitively, take nearby points to nearby points.
Topologie finaleEn mathématiques et plus précisément en topologie, la topologie finale, sur un ensemble d'arrivée commun à une famille d'applications définies chacune sur un espace topologique, est la topologie la plus fine pour laquelle toutes ces applications sont continues. La notion duale est celle de topologie initiale. Soient X un ensemble, (Y) une famille d'espaces topologiques et pour chaque indice i ∈ I, une application f : Y → X. La topologie finale sur X associée à la famille (f) est la plus fine des topologies sur X pour lesquelles chaque f est continue.
Topologie produitEn mathématiques, plus précisément en topologie, la topologie produit est une topologie définie sur un produit d'espaces topologiques. C'est de manière générale la topologie initiale associée aux projections de l'espace produit vers chacun de ses facteurs : autrement dit, c'est la topologie la moins fine rendant continues les projections. Dans le cas d'un produit fini, la topologie produit permet notamment de définir une topologie naturelle sur Rn à partir de celle de R.
Topologievignette|Déformation continue d'une tasse avec une anse, en un tore (bouée). thumb|Un ruban de Möbius est une surface fermée dont le bord se réduit à un cercle. De tels objets sont des sujets étudiés par la topologie. La topologie est la branche des mathématiques qui étudie les propriétés d'objets géométriques préservées par déformation continue sans arrachage ni recollement, comme un élastique que l’on peut tendre sans le rompre.
Topologie de l'ordreEn mathématiques, la topologie de l'ordre est une topologie naturelle définie sur tout ensemble ordonné (E, ≤), et qui dépend de la relation d'ordre ≤. Lorsque l'on définit la topologie usuelle de la droite numérique R, deux approches équivalentes sont possibles. On peut se fonder sur la relation d'ordre dans R, ou sur la valeur absolue de la distance entre deux nombres. Les égalités ci-dessous permettent de passer de l'une à l'autre : La valeur absolue se généralise en la notion de distance, qui induit le concept de topologie d'un espace métrique.
Espace localement compactEn topologie, un espace localement compact est un espace séparé qui admet des voisinages compacts pour tous ses points. Un tel espace n'est pas nécessairement compact lui-même mais on peut y généraliser (au moins partiellement) beaucoup de résultats sur les espaces compacts. Ce sont aussi les espaces qu'on peut « rendre » compacts avec un point grâce à la compactification d'Alexandrov. La compacité est une source très fertile de résultats en topologie mais elle reste une propriété très contraignante.
Topologie induiteEn mathématiques, la topologie induite est une topologie définie sur toute partie Y d'un espace topologique X : c'est la trace sur Y de la topologie sur X. Autrement dit, l'ensemble des ouverts de Y (muni de la topologie induite) est : {O⋂Y | O ouvert de X}. Ou encore : les voisinages dans Y d'un point sont les traces sur Y de ses voisinages dans X. On dit alors que Y est un sous-espace de X. La topologie induite est souvent sous-entendue dans les énoncés de topologie : par exemple, lorsque l'on a un espace topologique X donné, une partie Y de X sera dite compacte si elle est compacte pour la topologie induite par X sur Y.
Compacité (mathématiques)En topologie, on dit d'un espace qu'il est compact s'il est séparé et qu'il vérifie la propriété de Borel-Lebesgue. La condition de séparation est parfois omise et certains résultats demeurent vrais, comme le théorème des bornes généralisé ou le théorème de Tychonov. La compacité permet de faire passer certaines propriétés du local au global, c'est-à-dire qu'une propriété vraie au voisinage de chaque point devient valable de façon uniforme sur tout le compact.
Glossaire de topologieCeci est un glossaire de quelques termes utilisés en topologie. Ce glossaire est divisé en deux parties. La première traite des concepts généraux, et la seconde liste différents types d'espaces topologiques. Dans ce glossaire, tous les espaces sont supposés topologiques. Accessible : voir l'axiome de séparation T1. Adhérence L'adhérence ou fermeture d'une partie d'un espace topologique est le plus petit fermé contenant celle-ci. Un point est dit adhérent à une partie s'il appartient à son adhérence.
Topologie faibleEn mathématiques, la topologie faible d'un espace vectoriel topologique E est une topologie définie sur E au moyen de son dual topologique E'. On définit également sur E' une topologie dite faible-* au moyen de E. Dans tout cet article, sauf mention contraire, on notera pour et forme linéaire sur . Soient E un espace vectoriel normé (réel ou complexe), ou plus généralement un espace vectoriel topologique et E' son dual topologique, c’est-à-dire l'ensemble des formes linéaires continues sur E.