Intraclass correlationIn statistics, the intraclass correlation, or the intraclass correlation coefficient (ICC), is a descriptive statistic that can be used when quantitative measurements are made on units that are organized into groups. It describes how strongly units in the same group resemble each other. While it is viewed as a type of correlation, unlike most other correlation measures, it operates on data structured as groups rather than data structured as paired observations.
Z functionIn mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half. It is also called the Riemann–Siegel Z function, the Riemann–Siegel zeta function, the Hardy function, the Hardy Z function and the Hardy zeta function. It can be defined in terms of the Riemann–Siegel theta function and the Riemann zeta function by It follows from the functional equation of the Riemann zeta function that the Z function is real for real values of t.
Système axiomatiqueEn mathématiques, un système axiomatique est un ensemble d'axiomes dont certains ou tous les axiomes peuvent être utilisés logiquement pour dériver des théorèmes. Une théorie consiste en un système axiomatique et tous ses théorèmes dérivés. Un système axiomatique complet est un type particulier de système formel. Une théorie formelle signifie généralement un système axiomatique, par exemple formulé dans la théorie des modèles. Une démonstration formelle est une interprétation complète d'une démonstration mathématique dans un système formel.
Forme automorphedroite|vignette|500x500px|La fonction êta de Dedekind est une forme automorphe dans le plan complexe. Une forme automorphique, en analyse harmonique et théorie des nombres, est une fonction d'un groupe topologique G à valeurs dans le corps des nombres complexes (ou un espace vectoriel complexe) qui est invariante sous l'action d'un sous-groupe discret du groupe topologique et qui vérifie certaines conditions de dérivabilité et de croissance à l'infini.
Schéma d'axiomes de compréhensionLe schéma d'axiomes de compréhension, ou schéma d'axiomes de séparation, est un schéma d'axiomes de la théorie des ensembles introduit par Zermelo dans sa théorie des ensembles, souvent notée Z. On dit souvent en abrégé schéma de compréhension ou schéma de séparation. La théorie des classes permet de l'exprimer comme un seul axiome. Étant donné un ensemble A et une propriété P exprimée dans le langage de la théorie des ensembles, il affirme l'existence de l'ensemble B des éléments de A vérifiant la propriété P.
Holonomic functionIn mathematics, and more specifically in analysis, a holonomic function is a smooth function of several variables that is a solution of a system of linear homogeneous differential equations with polynomial coefficients and satisfies a suitable dimension condition in terms of D-modules theory. More precisely, a holonomic function is an element of a holonomic module of smooth functions. Holonomic functions can also be described as differentiably finite functions, also known as D-finite functions.
Fonction multiplicativeEn arithmétique, une fonction multiplicative est une fonction arithmétique f : N* → C vérifiant les deux conditions suivantes : f(1) = 1 ; pour tous entiers a et b > 0 premiers entre eux, on a : f (ab) = f(a)f(b). Une fonction complètement multiplicative est une fonction arithmétique g vérifiant : g(1) = 1 ; pour tous entiers a et b > 0, on a : g(ab) = g(a)g(b). Ces dénominations peuvent varier d'un ouvrage à un autre : fonction faiblement multiplicative pour fonction multiplicative, fonction multiplicative ou totalement multiplicative pour fonction complètement multiplicative.
Primitive notionIn mathematics, logic, philosophy, and formal systems, a primitive notion is a concept that is not defined in terms of previously-defined concepts. It is often motivated informally, usually by an appeal to intuition and everyday experience. In an axiomatic theory, relations between primitive notions are restricted by axioms. Some authors refer to the latter as "defining" primitive notions by one or more axioms, but this can be misleading. Formal theories cannot dispense with primitive notions, under pain of infinite regress (per the regress problem).
Formule de FaulhaberEn mathématiques, la formule de Faulhaber, portant le nom du mathématicien allemand Johann Faulhaber, exprime la somme des puissances p-ième des n premiers entiers : par une fonction polynomiale de degré p + 1 en n, les coefficients impliquant les nombres de Bernoulli : .Les coefficients qui apparaissent sont les coefficients binomiaux (aussi notés ). Dans la convention la plus usuelle, les nombres de Bernoulli sont mais ici, une convention moins courante est adoptée, à savoir que le nombre est changé en .
Axiome de séparation (topologie)En topologie, un axiome de séparation est une propriété satisfaite par certains espaces topologiques, similaire à la propriété de séparation de Hausdorff (dite aussi T2), et concernant la séparation de points ou de fermés, du point de vue soit de voisinages, soit de fonctions continues réelles. Divers axiomes de séparation peuvent être ordonnés par implication, notamment ceux de la série des axiomes codés par la lettre « T » et un indice numérique, ces axiomes étant en général d'autant plus restrictifs que les indices sont élevés et les topologies correspondantes plus fines.