Catégorie des anneauxEn mathématiques, la catégorie des anneaux est une construction qui rend compte abstraitement des propriétés des anneaux en algèbre. Dans ce contexte, « anneau » signifie toujours anneau unitaire. La catégorie des anneaux, notée Ring, est la catégorie définie ainsi : Les objets sont les anneaux ; Les morphismes sont les morphismes d'anneaux, avec la composition usuelle, et l'identité est la fonction identité sur un anneau donné. La sous-catégorie pleine de Ring, dont les objets sont les anneaux commutatifs, forme la catégorie des anneaux commutatifs, notée CRing.
Catégorie des ensemblesEn mathématiques, plus précisément en théorie des catégories, la catégorie des ensembles, notée Set ou Ens, est la catégorie dont les objets sont les ensembles, et dont les morphismes sont les applications d'un ensemble dans un autre. Sa définition est motivée par le fait qu'en théorie des ensembles usuelle, il n'existe pas d'« ensemble de tous les ensembles », car l'existence d'un tel objet résulterait en une contradiction logique : le paradoxe de Russell.
Catégorie dérivéeLa catégorie dérivée d'une catégorie est une construction, originellement introduite par Jean-Louis Verdier dans sa thèse et reprise dans SGA 41⁄2, qui permet notamment de raffiner et simplifier la théorie des foncteurs dérivés. Elle a amené à plusieurs développements importants, ainsi que des reformulations élégantes par exemple de la théorie des D-modules et des preuves de la qui généralise le vingt-et-unième problème de Hilbert. En particulier, le langage des catégories dérivées permet de simplifier des problèmes exprimés en termes de suites spectrales.
Équivalence de catégoriesEn mathématiques, plus précisément en théorie des catégories, une équivalence de catégories est une relation qui établit que deux catégories sont "essentiellement les mêmes". C'est un foncteur entre les deux catégories, qui prend compte formellement du fait que ces catégories relèvent d'une même structure : on dit alors que les catégories sont équivalentes. À la différence de la notion d'isomorphisme de catégories, la notion d'équivalence est moins rigide, plus pratique et plus courante.
Catégorie de modèlesEn mathématiques, plus précisément en théorie de l'homotopie, une catégorie de modèles est une catégorie dotée de trois classes de morphismes, appelés équivalences faibles, fibrations et cofibrations, satisfaisant à certains axiomes. Ceux-ci sont abstraits du comportement homotopique des espaces topologiques et des complexes de chaînes. La théorie des catégories de modèles est une sous-branche de la théorie des catégories et a été introduite par Daniel Quillen en 1967 pour généraliser l'étude de l'homotopie aux catégories et ainsi avoir de nouveaux outils pour travailler avec l'homotopie dans les espaces topologiques.
Nerf (théorie des catégories)En mathématiques, et plus particulièrement en théorie des catégories, le nerf d'une petite catégorie est un ensemble simplicial construit à partir des objets et des morphismes de . La réalisation géométrique de cet ensemble simplicial est un espace topologique, appelé l'espace classifiant de la catégorie . Ces objets étroitement liés peuvent fournir des informations sur certains catégories familières et utiles à l'aide de la topologie algébrique, le plus souvent la théorie de l'homotopie.
Kan fibrationIn mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan. For each n ≥ 0, recall that the , , is the representable simplicial set Applying the geometric realization functor to this simplicial set gives a space homeomorphic to the topological standard -simplex: the convex subspace of Rn+1 consisting of all points such that the coordinates are non-negative and sum to 1.
Catégorie abélienneEn mathématiques, les catégories abéliennes forment une famille de catégories qui contient celle des groupes abéliens. Leur étude systématique a été instituée par Alexandre Grothendieck pour éclairer les liens qui existent entre différentes théories cohomologiques, comme la cohomologie des faisceaux ou la cohomologie des groupes. Toute catégorie abélienne est additive. Une catégorie abélienne est une catégorie additive dans laquelle on peut additionner les flèches et définir pour toute flèche les notions de noyau, conoyau et .
A¹ homotopy theoryIn algebraic geometry and algebraic topology, branches of mathematics, A1 homotopy theory or motivic homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to Fabien Morel and Vladimir Voevodsky. The underlying idea is that it should be possible to develop a purely algebraic approach to homotopy theory by replacing the unit interval [0, 1], which is not an algebraic variety, with the affine line A1, which is.
Homotopy colimit and limitIn mathematics, especially in algebraic topology, the homotopy limit and colimitpg 52 are variants of the notions of and colimit extended to the homotopy category . The main idea is this: if we have a diagramconsidered as an object in the , (where the homotopy equivalence of diagrams is considered pointwise), then the homotopy limit and colimits then correspond to the and coconewhich are objects in the homotopy category , where is the category with one object and one morphism.