Structure d'incidencevignette| Exemples de structures d'incidence: Exemple 1: Points et droites du plan euclidien Exemple 2: Points et cercles Exemple 3: Structure définie par une matrice d'incidence. En mathématiques, une structure d'incidence est toute composition de deux types d'objets dans le plan euclidien : des points ou l'équivalent de points et des droites ou l'équivalent de droites et d'une seule relation possible entre ces types, les autres propriétés étant ignorées et la structure pouvant ainsi se représenter par une matrice.
Point d'accumulation (mathématiques)En mathématiques, un point d'accumulation d'une partie A d'un espace topologique E est un point x de E qui peut être « approché » par des points de A au sens où chaque voisinage de x – pour la topologie de E – contient un point de A distinct de x. Un tel point x n'est pas nécessairement un point de A. Ce concept généralise la notion de limite, et permet de définir des notions comme les espaces fermés et l'adhérence. De fait, pour qu'un espace soit fermé, il faut et il suffit qu'il contienne tous ses points d'accumulation.
Cercle osculateurdroite|vignette|upright=1.3|Au point M de la courbe rouge, le cercle osculateur (en pointillés) approche mieux la courbe qu'un cercle tangent quelconque (passant par N). Son centre O et son rayon R sont le centre de courbure et le rayon de courbure de la courbe en M. En géométrie différentielle, le cercle osculateur ou cercle de courbure en un point d'une courbe est un objet permettant la description locale de cette courbe.
CombinatoireEn mathématiques, la combinatoire, appelée aussi analyse combinatoire, étudie les configurations de collections finies d'objets ou les combinaisons d'ensembles finis, et les dénombrements. La combinatoire est en fait présente dans toute l'antiquité en Inde et en Chine. Donald Knuth, dans le volume 4A « Combinatorial Algorithms » de The Art of Computer Programming parle de la génération de n-uplets ; il dit que la génération de motifs combinatoires «a commencé alors que la civilisation elle-même prenait forme» (« began as civilization itself was taking shape»).
Coefficient binomialEn mathématiques, les coefficients binomiaux, ou coefficients du binôme, définis pour tout entier naturel n et tout entier naturel k inférieur ou égal à n, donnent le nombre de parties à k éléments d'un ensemble à n éléments. On les note - qui se lit « k parmi n » - ou , la lettre C étant l'initiale du mot « combinaison » Les coefficients binomiaux s'expriment à l'aide de la fonction factorielle : Ils interviennent dans de nombreux domaines des mathématiques : développement du binôme en algèbre, dénombrements, développement en série, lois de probabilités, etc.
Théorème des zéros de HilbertLe théorème des zéros de Hilbert, parfois appelé Nullstellensatz, est un théorème d'algèbre commutative qui est à la base du lien entre les idéaux et les variétés algébriques. Il a été démontré par le mathématicien allemand David Hilbert. Une algèbre de type fini sur K est un anneau quotient d'un anneau de polynômes K[X_1,...,X_n] par un idéal. Sa structure de K-algèbre est induite par celle de K[X_1,...,X_n]. Il existe plusieurs formulations du théorème des zéros de Hilbert. Théorème 1 (Lemme de Zariski).
Borne supérieure et borne inférieureEn mathématiques, les notions de borne supérieure et borne inférieure d'un ensemble de nombres réels interviennent en analyse, comme cas particulier de la définition générale suivante : la borne supérieure (ou le supremum) d'une partie d'un ensemble (partiellement) ordonné est le plus petit de ses majorants. Une telle borne n'existe pas toujours, mais si elle existe alors elle est unique. Elle n'appartient pas nécessairement à la partie considérée. Dualement, la borne inférieure (ou l'infimum) d'une partie est le plus grand de ses minorants.
ThéorèmeEn mathématiques et en logique, un théorème (du grec théorêma, objet digne d'étude) est une assertion qui est démontrée, c'est-à-dire établie comme vraie à partir d'autres assertions déjà démontrées (théorèmes ou autres formes d'assertions) ou des assertions acceptées comme vraies, appelées axiomes. Un théorème se démontre dans un système déductif et est une conséquence logique d'un système d'axiomes. En ce sens, il se distingue d'une loi scientifique, obtenue par l'expérimentation.
Matrice d'incidenceEn mathématiques, et plus particulièrement en théorie des graphes, la matrice d'incidence d'un graphe est une matrice qui décrit le graphe en indiquant quels liens arrivent sur quels sommets. La matrice d'incidence est une matrice n x p, où n est le nombre de sommets du graphe et p est le nombre de liens (arêtes ou arcs). Cette matrice est définie de deux façons différentes selon que le graphe est orienté ou non orienté.
Cercle unitéthumb|Cercle unité Le cercle unité est une expression courante pour désigner l'ensemble des nombres complexes de module 1. Si le module est vu comme une norme euclidienne, le cercle est une courbe de longueur 2π, et est le bord d'un disque d'aire π. Le cercle unité est l'image de l'axe des imaginaires purs iR par l'exponentielle complexe. Le cercle unité est stable par produit. C'est un sous-groupe du groupe des inversibles C* de C. Plus précisément, c'est son plus grand sous-groupe compact.