Moyenne quadratiqueLa (rms en anglais, pour root mean square) d'un ensemble de nombres est la racine carrée de la moyenne arithmétique des carrés de ces nombres. Elle correspond au cas de la moyenne d'ordre p. Par exemple, l'écart type dans une population est la moyenne quadratique des distances à la moyenne. La moyenne quadratique est supérieure ou égale à la moyenne arithmétique. Dans une série de valeurs, une valeur particulièrement élevée par rapport aux autres aura plus d'impact sur la moyenne quadratique de la série que sur la moyenne arithmétique.
Loi GammaEn théorie des probabilités et en statistiques, une distribution Gamma ou loi Gamma est un type de loi de probabilité de variables aléatoires réelles positives. La famille des distributions Gamma inclut, entre autres, la loi du χ2 et les distributions exponentielles et la distribution d'Erlang. Une distribution Gamma est caractérisée par deux paramètres k et θ et qui affectent respectivement la forme et l'échelle de la représentation graphique de sa fonction de densité.
Courbe planevignette|droite|Courbe hyperbolique. En mathématiques, plus précisément en géométrie, une courbe plane est une courbe qui est entièrement contenue dans un (unique) plan, et qui est identifiable à une fonction continue : où est un intervalle de l'ensemble des nombres réels. L' d'une courbe est aussi appelée support de la courbe. Parfois, on utilise aussi l'expression courbe pour indiquer le support d'une courbe. Une courbe sur un espace euclidien de dimension supérieure à 2 est dite plane si son support est contenu dans un plan lui-même contenu dans l'espace euclidien dans lequel elle est définie.
Îlot de stabilitéL’îlot de stabilité est un ensemble hypothétique de nucléides transuraniens qui présenteraient une période radioactive très supérieure à celle des isotopes voisins. Ce concept est issu du modèle en couches du noyau atomique, dans lequel les nucléons sont vus comme des objets quantiques qui se répartissent dans le noyau en niveaux d'énergie de façon similaire aux électrons dans les atomes : lorsqu'un niveau d'énergie est saturé de nucléons, cela confère une stabilité particulière au noyau.
Ajustement de courbethumb|upright=2.2|Ajustement par itérations d'une courbe bruitée par un modèle de pic asymétrique (méthode de Gauss-Newton avec facteur d'amortissement variable). L'ajustement de courbe est une technique d'analyse d'une courbe expérimentale, consistant à construire une courbe à partir de fonctions mathématiques et d'ajuster les paramètres de ces fonctions pour se rapprocher de la courbe mesurée . On utilise souvent le terme anglais curve fitting, profile fitting ou simplement fitting, pour désigner cette méthode ; on utilise souvent le franglais « fitter une courbe » pour dire « ajuster une courbe ».
Squared deviations from the meanSquared deviations from the mean (SDM) result from squaring deviations. In probability theory and statistics, the definition of variance is either the expected value of the SDM (when considering a theoretical distribution) or its average value (for actual experimental data). Computations for analysis of variance involve the partitioning of a sum of SDM. An understanding of the computations involved is greatly enhanced by a study of the statistical value where is the expected value operator.
Loi de WeibullEn théorie des probabilités, la loi de Weibull, nommée d'après Waloddi Weibull en 1951, est une loi de probabilité continue. La loi de Weibull est un cas spécial de loi d'extremum généralisée au même titre que la loi de Gumbel ou la loi de Fréchet. Avec deux paramètres (pour x > 0), la densité de probabilité est : où k > 0 est le paramètre de forme et λ > 0 le paramètre d'échelle de la distribution.
Differentiable curveDifferential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach. Differential geometry takes another path: curves are represented in a parametrized form, and their geometric properties and various quantities associated with them, such as the curvature and the arc length, are expressed via derivatives and integrals using vector calculus.
Accélération de suiteEn mathématiques, laccélération de suite est une méthode de transformation de suites ou de série numérique visant à améliorer la vitesse de convergence d'une série. Des techniques d'accélération sont souvent utilisées en analyse numérique, afin d'améliorer la rapidité de méthodes d'intégration numérique ou obtenir des identités sur des fonctions spéciales. Par exemple, la transformation d'Euler appliquée à la série hypergéométrique permet de retrouver plusieurs identités connues.
Courbe elliptiqueEn mathématiques, une courbe elliptique est un cas particulier de courbe algébrique, munie entre autres propriétés d'une addition géométrique sur ses points. Les courbes elliptiques ont de nombreuses applications dans des domaines très différents des mathématiques : elles interviennent ainsi en mécanique classique dans la description du mouvement des toupies, en théorie des nombres dans la démonstration du dernier théorème de Fermat, en cryptologie dans le problème de la factorisation des entiers ou pour fabriquer des codes performants.