Publication

Recursive linear estimation in Krein spaces. I. Theory

Concepts associés (25)
Matrix decomposition
In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
Espace préhilbertien
En mathématiques, un espace préhilbertien est défini comme un espace vectoriel réel ou complexe muni d'un produit scalaire. Cette notion généralise celles d'espace euclidien ou hermitien dans le cas d'une dimension quelconque, tout en conservant certaines bonnes propriétés géométriques des espaces de dimension finie grâce aux propriétés du produit scalaire, mais en perdant un atout de taille : un espace préhilbertien de dimension infinie n'est pas nécessairement complet. On peut cependant le compléter, pour obtenir un espace de Hilbert.
Filtre de Kalman
vignette| Concept de base du filtre de Kalman. En statistique et en théorie du contrôle, le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d'un système dynamique à partir d'une série de mesures incomplètes ou bruitées. Le filtre a été nommé d'après le mathématicien et informaticien américain d'origine hongroise Rudolf Kálmán. Le filtre de Kalman est utilisé dans une large gamme de domaines technologiques (radar, vision électronique, communication...).
Matrice symétrique
vignette|Matrice 5x5 symétrique. Les coefficients égaux sont représentés par la même couleur. En algèbre linéaire et multilinéaire, une matrice symétrique est une matrice carrée qui est égale à sa propre transposée, c'est-à-dire telle que a = a pour tous i et j compris entre 1 et n, où les a sont les coefficients de la matrice et n est son ordre. Les coefficients d'une matrice symétrique sont symétriques par rapport à la diagonale principale (du coin en haut à gauche jusqu'à celui en bas à droite).
Matrice unitaire
En algèbre linéaire, une matrice carrée U à coefficients complexes est dite unitaire si elle vérifie les égalités : où la matrice adjointe de U est notée U* (ou U en physique, et plus particulièrement en mécanique quantique) et I désigne la matrice identité. L'ensemble des matrices unitaires de taille n forme le groupe unitaire U(n). Les matrices unitaires carrées à coefficients réels sont les matrices orthogonales.
Décomposition LU
En algèbre linéaire, la décomposition LU est une méthode de décomposition d'une matrice comme produit d'une matrice triangulaire inférieure (comme lower, inférieure en anglais) par une matrice triangulaire supérieure (comme upper, supérieure). Cette décomposition est utilisée en analyse numérique pour résoudre des systèmes d'équations linéaires. Soit une matrice carrée. On dit que admet une décomposition LU s'il existe une matrice triangulaire inférieure formée de 1 sur la diagonale, notée , et une matrice triangulaire supérieure, notée , qui vérifient l'égalité Il n'est pas toujours vrai qu'une matrice admette une décomposition LU.
Décomposition d'une matrice en éléments propres
En algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
Factorisation
En mathématiques, la factorisation consiste à écrire une expression algébrique (notamment une somme), un nombre, une matrice sous la forme d'un produit. Cette transformation peut se faire suivant différentes techniques détaillées ci-dessous. Les enjeux de la factorisation sont très divers : à un niveau élémentaire, le but peut être de ramener la résolution d'une équation à celle d'une équation produit-nul, ou la simplification d'une écriture fractionnaire ; à un niveau intermédiaire, la difficulté algorithmique présumée de la factorisation des nombres entiers en produit de facteurs premiers est à la base de la fiabilité du cryptosystème RSA.
Estimation spectrale
L'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Point stationnaire
350px|thumb|right|Les points stationnaires de la fonction sont marquées par des ronds rouges. Dans ce cas, ce sont des extrema locaux. Les carrés bleus désignent les points d'inflexion. En analyse réelle, un point stationnaire ou point critique d'une fonction dérivable d'une variable réelle est un point de son graphe où sa dérivée s'annule. Visuellement, cela se traduit par un point où la fonction arrête de croître ou de décroître. Pour une fonction de plusieurs variables réelles, un point stationnaire (critique) est un point où le gradient s'annule.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.