Espace de suites ℓpEn mathématiques, l'espace est un exemple d'espace vectoriel, constitué de suites à valeurs réelles ou complexes et qui possède, pour 1 ≤ p ≤ ∞, une structure d'espace de Banach. Considérons l'espace vectoriel réel R, c'est-à-dire l'espace des n-uplets de nombres réels. La norme euclidienne d'un vecteur est donnée par : Mais pour tout nombre réel p ≥ 1, on peut définir une autre norme sur R, appelée la p-norme, en posant : pour tout vecteur . Pour tout p ≥ 1, R muni de la p-norme est donc un espace vectoriel normé.
Interpolation numériqueEn analyse numérique (et dans son application algorithmique discrète pour le calcul numérique), l'interpolation est une opération mathématique permettant de remplacer une courbe ou une fonction par une autre courbe (ou fonction) plus simple, mais qui coïncide avec la première en un nombre fini de points (ou de valeurs) donnés au départ. Suivant le type d'interpolation, outre le fait de coïncider en un nombre fini de points ou de valeurs, il peut aussi être demandé à la courbe ou à la fonction construite de vérifier des propriétés supplémentaires.
Espace de SobolevEn analyse mathématique, les espaces de Sobolev sont des espaces fonctionnels particulièrement adaptés à la résolution des problèmes d'équation aux dérivées partielles. Ils doivent leur nom au mathématicien russe Sergueï Lvovitch Sobolev. Plus précisément, un espace de Sobolev est un espace vectoriel de fonctions muni de la norme obtenue par la combinaison de la norme L de la fonction elle-même et de ses dérivées jusqu'à un certain ordre. Les dérivées sont comprises dans un sens faible, au sens des distributions afin de rendre l'espace complet.
Équations d'EulerEn mécanique des fluides, les équations d'Euler sont des équations aux dérivées partielles non linéaires qui décrivent l'écoulement des fluides (liquide ou gaz) dans l’approximation des milieux continus. Ces écoulements sont adiabatiques, sans échange de quantité de mouvement par viscosité ni d'énergie par conduction thermique. L'histoire de ces équations remonte à Leonhard Euler qui les a établies pour des écoulements incompressibles (1757).
Interpolation polynomialeEn mathématiques, en analyse numérique, l'interpolation polynomiale est une technique d'interpolation d'un ensemble de données ou d'une fonction par un polynôme. En d'autres termes, étant donné un ensemble de points (obtenu, par exemple, à la suite d'une expérience), on cherche un polynôme qui passe par tous ces points, p(xi) = yi, et éventuellement vérifie d'autres conditions, de degré si possible le plus bas. Cependant, dans le cas de l'interpolation lagrangienne, par exemple, le choix des points d'interpolation est critique.
Interpolation multivariéeEn analyse numérique, linterpolation multivariée ou linterpolation spatiale désigne l'interpolation numérique de fonctions de plus d'une variable. Le problème est similaire à celui de l'interpolation polynomiale sur un intervalle réel : on connait les valeurs d'une fonction à interpoler aux points et l'objectif consiste à évaluer la valeur de la fonction en des points . L'interpolation multivariée est notamment utilisée en géostatistique, où elle est utilisée pour reconstruire les valeurs d'une variable régionalisée sur un domaine à partir d'échantillons connus en un nombre limité de points.
Condition de HölderEn analyse, la continuité höldérienne ou condition de Hölder — nommée d'après le mathématicien allemand Otto Hölder — est une condition suffisante, généralisant celle de Lipschitz, pour qu’une application définie entre deux espaces métriques soit uniformément continue. La définition s’applique donc en particulier pour les fonctions d’une variable réelle. Si (X, d) et (Y, d) sont deux espaces métriques, une fonction f : X → Y est dite a-höldérienne s’il existe une constante C telle que pour tous x, y ∈ X : La continuité höldérienne d’une fonction dépend donc d’un paramètre a ∈ ]0, 1].
Espace LpEn mathématiques, un espace L est un espace vectoriel de classes des fonctions dont la puissance d'exposant p est intégrable au sens de Lebesgue, où p est un nombre réel strictement positif. Le passage à la limite de l'exposant aboutit à la construction des espaces L de fonctions bornées. Les espaces L sont appelés espaces de Lebesgue. Identifiant les fonctions qui ne diffèrent que sur un ensemble négligeable, chaque espace L est un espace de Banach lorsque l'exposant est supérieur ou égal à 1.
Inégalité de HölderEn analyse, l’inégalité de Hölder, ainsi nommée en l'honneur de Otto Hölder, est une inégalité fondamentale relative aux espaces de fonctions , comme les espaces de suites . C'est une généralisation de l'inégalité de Cauchy-Schwarz. Il existe une formulation de l'inégalité utilisée en mathématiques discrètes. Plus généralement, pour et défini par , si et alors et . De plus, lorsque et sont finis, il y a égalité si et seulement si et sont colinéaires presque partout (p.p.), c'est-à-dire s’il existe et non simultanément nuls tels que p.
Interpolation d'Hermitethumb|Comparaison graphique entre interpolation lagrangienne (en rouge) et hermitienne (en bleu) de la fonction (en noir) en trois points équidistants -1, 1/2, 2. En analyse numérique, l'interpolation d'Hermite, nommée d'après le mathématicien Charles Hermite, est une extension de l'interpolation de Lagrange, qui consiste, pour une fonction dérivable donnée et un nombre fini de points donnés, à construire un polynôme qui est à la fois interpolateur (c'est-à-dire dont les valeurs aux points donnés coïncident avec celles de la fonction) et osculateur (c'est-à-dire dont les valeurs de la dérivée aux points donnés coïncident avec celles de la dérivée de la fonction).