Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Dimension d'un espace vectorielvignette|espace à zéro dimension. En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dimK(E) (lire « dimension de E sur K ») ou dim(E) (s'il n'y a aucune confusion sur le corps K des scalaires). Si E admet une partie génératrice finie, alors sa dimension est finie et elle vaut le nombre de vecteurs constituant une base de E.
Espace vectorielvignette|Dans un espace vectoriel, on peut additionner deux vecteurs. Par exemple, la somme du vecteur v (en bleu) et w (en rouge) est v + w. On peut aussi multiplier un vecteur, comme le vecteur w que l'on peut multiplier par 2, on obtient alors 2w et la somme devient v + 2w. En mathématiques, plus précisément en algèbre linéaire, un espace vectoriel est un ensemble d'objets, appelés vecteurs, que l'on peut additionner entre eux, et que l'on peut multiplier par un scalaire (pour les étirer ou les rétrécir, les tourner, etc.
Composantes d'un vecteurvignette|Composantes d'un vecteur dans un espace géométrique à trois dimensions, x, y et z. Dans le cas du concept géométrique classique de vecteur, il existe une identification complète entre ses « composantes » et les « coordonnées » qui le représentent. Cependant, il existe d'autres types d'espaces vectoriels (comme, par exemple, l'ensemble des polynômes d'ordre n), dans lesquels le concept de coordonnée n'a pas la généralité de l'idée de composante.
Fonction à valeurs vectoriellesEn mathématiques, une fonction à valeurs vectorielles ou fonction vectorielle est une fonction dont l'espace d'arrivée est un ensemble de vecteurs, son ensemble de définition pouvant être un ensemble de scalaires ou de vecteurs. Courbe paramétrée Un exemple classique de fonctions vectorielles est celui des courbes paramétrées, c'est-à-dire des fonctions d'une variable réelle (représentant par exemple le temps dans les applications en mécanique du point) à valeurs dans un espace euclidien, par exemple le plan usuel (on parle alors de courbes planes) ou l'espace usuel (on parle alors de courbes gauches).
Factorial moment measureIn probability and statistics, a factorial moment measure is a mathematical quantity, function or, more precisely, measure that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both. Moment measures generalize the idea of factorial moments, which are useful for studying non-negative integer-valued random variables.
Processus de Poissonvignette|Schéma expliquant le processus de Poisson Un processus de Poisson, nommé d'après le mathématicien français Siméon Denis Poisson et la loi du même nom, est un processus de comptage classique dont l'équivalent discret est la somme d'un processus de Bernoulli. C'est le plus simple et le plus utilisé des processus modélisant une . C'est un processus de Markov, et même le plus simple des processus de naissance et de mort (ici un processus de naissance pur).
Espace vectoriel topologiqueEn mathématiques, les espaces vectoriels topologiques sont une des structures de base de l'analyse fonctionnelle. Ce sont des espaces munis d'une structure topologique associée à une structure d'espace vectoriel, avec des relations de compatibilité entre les deux structures. Les exemples les plus simples d'espaces vectoriels topologiques sont les espaces vectoriels normés, parmi lesquels figurent les espaces de Banach, en particulier les espaces de Hilbert. Un espace vectoriel topologique (« e.v.t.
Processus de LévyEn théorie des probabilités, un processus de Lévy, nommé d'après le mathématicien français Paul Lévy, est un processus stochastique en temps continu, continu à droite limité à gauche (càdlàg), partant de 0, dont les accroissements sont stationnaires et indépendants (cette notion est expliquée ci-dessous). Les exemples les plus connus sont le processus de Wiener et le processus de Poisson.
BranchementEn informatique, un branchement est une opération consistant à se déplacer au sein d'un code exécuté par un processeur, en « sautant » à une adresse identifiée au lieu de poursuivre l'exécution du code séquentiellement. Un processeur est une unité de traitement séquentielle, ce qui signifie qu'il exécute un ensemble d'instructions en effectuant celles-ci les unes après les autres.