Équation de la chaleurEn mathématiques et en physique théorique, l'équation de la chaleur est une équation aux dérivées partielles parabolique, pour décrire le phénomène physique de conduction thermique, introduite initialement en 1807 par Joseph Fourier, après des expériences sur la propagation de la chaleur, suivies par la modélisation de l'évolution de la température avec des séries trigonométriques, appelés depuis séries de Fourier et transformées de Fourier, permettant une grande amélioration à la modélisation mathématique
Moment (probabilités)En théorie des probabilités et en statistique, les moments d’une variable aléatoire réelle sont des indicateurs de la dispersion de cette variable. Le premier moment ordinaire, appelé moment d'ordre 1 est l'espérance (i.e la moyenne) de cette variable. Le deuxième moment centré d'ordre 2 est la variance. Ainsi, l'écart type est la racine carrée du moment centré d’ordre 2. Le moment d'ordre 3 est l'asymétrie. Le moment d'ordre 4 est le kurtosis. Le concept de moment est proche du concept de moment en physique.
L-momentIn statistics, L-moments are a sequence of statistics used to summarize the shape of a probability distribution. They are linear combinations of order statistics (L-statistics) analogous to conventional moments, and can be used to calculate quantities analogous to standard deviation, skewness and kurtosis, termed the L-scale, L-skewness and L-kurtosis respectively (the L-mean is identical to the conventional mean). Standardised L-moments are called L-moment ratios and are analogous to standardized moments.
Lois de Fickvignette|250px|La diffusion moléculaire d'un point de vue microscopique et macroscopique. Les molécules solubles sur le côté gauche de la barrière (ligne violette) diffusent pour remplir le volume complet. En haut : une seule molécule se déplace aléatoirement. Au milieu : Le soluté remplit le volume disponible par marche aléatoire. En bas : au niveau macroscopique, le côté aléatoire devient indétectable. Le soluté se déplace des zones où les concentrations sont élevées vers les zones à concentrations plus faibles.
Intégrale curviligneEn géométrie différentielle, l'intégrale curviligne est une intégrale où la fonction à intégrer est évaluée sur une courbe Γ. Il y a deux types d'intégrales curvilignes, selon que la fonction est à valeurs réelles ou à valeurs dans les formes linéaires. Le second type (qui peut se reformuler en termes de circulation d'un champ de vecteurs) a comme cas particulier les intégrales que l'on considère en analyse complexe. Dans cet article, Γ est un arc orienté dans R, rectifiable c'est-à-dire paramétré par une fonction continue à variation bornée t ↦ γ(t), avec t ∈ [a, b].
Intégrale de cheminUne 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.
Intégration (mathématiques)En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.
Molecular diffusionMolecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles. Diffusion explains the net flux of molecules from a region of higher concentration to one of lower concentration. Once the concentrations are equal the molecules continue to move, but since there is no concentration gradient the process of molecular diffusion has ceased and is instead governed by the process of self-diffusion, originating from the random motion of the molecules.
Problème des momentsEn analyse mathématique, le problème des moments est un problème inverse consistant à reconstruire une mesure réelle sur un intervalle donné à partir de ses moments. Plus concrètement, étant donnés un intervalle réel I et une suite (m) de réels, on peut se demander s'il existe sur I une mesure de Borel (donc positive) μ telle que pour tout entier naturel n, et, le cas échéant, si une telle mesure est unique. Si cette mesure existe, elle représente alors la loi de probabilité d’une variable aléatoire réelle dont les moments sont les nombres m.
Intégrale de DirichletL'intégrale de Dirichlet est l'intégrale de la fonction sinus cardinal sur la demi-droite des réels positifs Il s'agit d'une intégrale impropre semi-convergente, c'est-à-dire qu'elle n'est pas absolument convergente () mais existe et est finie. On considère la fonctionEn 0, sa limite à droite vaut 1, donc f est prolongeable en une application continue sur [0, +∞[, si bien qu'elle est intégrable sur [0, a] pour tout a > 0.Mais elle n'est pas intégrable en +∞, c'est-à-dire que.