DifféomorphismeEn mathématiques, un difféomorphisme est un isomorphisme dans la catégorie usuelle des variétés différentielles : c'est une bijection différentiable d'une variété dans une autre, dont la bijection réciproque est aussi différentiable. vignette|Image d'une grille à maille carrée par un difféomorphisme du carré dans lui-même. Soient : E et F deux espaces vectoriels normés réels de dimension finie ; U un ouvert de E, V un ouvert de F ; f une application de U dans V.
PropriétéLa propriété est la possession d'un bien meuble ou immeuble ou d'une production intellectuelle, reconnue et consacrée par une autorité (divine ou humaine), la société, la loi, la raison générale ou le consentement universel C'est selon Pierre-Joseph Proudhon une usucapion ou une usurpation. La Révolution française a exalté le droit de propriété : inviolable et sacrée, selon l'article 17 de la Déclaration des droits de l'homme et du citoyen de 1789.
Droit des biensLe droit des biens ou droits réels est branche du droit qui étudie les relations juridiques dont l'origine ou l'objet se rapporte aux biens ou choses. Le droit des biens s'intéresse aux relations entre personnes et biens. Les biens sont un ensemble qui comporte tant des choses matérielles (voiture) que des choses immatérielles (droit d'auteur), tant des choses meubles (action de société) que des choses immeubles (appartement). Les droits réels comprennent un certain nombre de principes fondamentaux issus de leur nature particulière.
Propriété personnelleLa propriété personnelle (en anglais personal property) est un type de propriété hérité du droit romain qu'on retrouve aujourd'hui dans le système de droit anglais dit de Common law mais qui ne correspond à aucune classification française. La propriété personnelle porte sur des biens mobiliers corporels ou non, et se distingue de la « propriété réelle » (real property) qui porte sur l'immobilier. En droit romain, la propriété personnelle est appelée propriété mobilière (n'importe quelle chose qui peut être déplacée d'un endroit à un autre).
Espace à bases dénombrables de voisinagesEn mathématiques, un espace topologique X est à bases dénombrables de voisinages si tout point x de X possède une base de voisinages dénombrable, c'est-à-dire s'il existe une suite V, V, V, ... de voisinages de x telle que tout voisinage de x contienne l'un des V. Cette notion a été introduite en 1914 par Felix Hausdorff. Tout espace métrique (donc aussi tout espace métrisable) est à bases dénombrables de voisinages (prendre par exemple V = une boule (ouverte ou fermée) de centre x et de rayon 2).
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Espace dénombrablement compactEn mathématiques, un espace dénombrablement compact est un espace topologique dont tout recouvrement par une famille dénombrable d'ouverts possède un sous-recouvrement fini. La notion de compacité dénombrable entretient des rapports étroits avec celles de quasi-compacité et compacité et celle de compacité séquentielle. Pour un espace métrisable, ces quatre notions sont équivalentes. Soit X un espace topologique (non supposé séparé).
Activités en immobilierL'activité en immobilier est une expression définissant et incluant toute activité commerciale ou privée ayant trait aux biens immobiliers. Le terme désigne communément les activités de gestion et transaction s'opérant sur ces biens, mais il touche également de nombreuses activités connexes telles que : le logement, la construction, la promotion, le conseil, l'urbanisme, l'architecture, la gérance, etc. Le droit et la finance sont des domaines d'activité indispensables au fonctionnement du marché de l’immobilier.
Espace à base dénombrableEn mathématiques, plus précisément en topologie, un espace est dit à base dénombrable si sa topologie admet une base dénombrable. La plupart des espaces usuels de l'analyse et beaucoup d'espaces en analyse fonctionnelle sont à base dénombrable. Tout espace à base dénombrable est à la fois séparable, à bases dénombrables de voisinages et de Lindelöf (en particulier, pour un espace à base dénombrable, les trois propriétés quasi-compact/dénombrablement compact/séquentiellement compact sont équivalentes).
Axiom of countabilityIn mathematics, an axiom of countability is a property of certain mathematical objects that asserts the existence of a countable set with certain properties. Without such an axiom, such a set might not provably exist.