Publication

Preisach-type hysteresis modelling in Bi-2223 tapes

Concepts associés (32)
Hystérésis
L'hystérésis (ou hystérèse), du grec grc (« après », « plus tard »), substantif féminin, est la propriété d'un système dont l'évolution ne suit pas le même chemin selon qu'une cause extérieure augmente ou diminue. Soit une grandeur cause notée C produisant une grandeur effet notée E. On dit qu'il y a hystérésis lorsque la courbe E = f(C) obtenue à la croissance de C ne se superpose pas avec la courbe E = f(C) obtenue à la décroissance de C.
Série de Taylor
thumb|Brook Taylor, dont la série porte le nom. En mathématiques, et plus précisément en analyse, la série de Taylor au point d'une fonction (réelle ou complexe) indéfiniment dérivable en ce point, appelée aussi le développement en série de Taylor de en , est une série entière approchant la fonction autour de , construite à partir de et de ses dérivées successives en . Elles portent le nom de Brook Taylor, qui les a introduites en 1715.
Hystérésis magnétique
L'hystérésis magnétique désigne le phénomène d'hystérésis observé lors de l'aimantation d'un matériau. Ainsi, lorsqu'un champ magnétique externe est appliqué à un matériau ferromagnétique tel le fer, les dipôles magnétiques atomiques s'alignent en fonction de ce dernier. Lorsque le champ est retiré, une partie de l'alignement demeure au sein du matériau. Ce dernier a été aimanté. La relation entre la force du champ (H) et l'aimantation (M) n'est pas linéaire.
Méthode d'Euler
En mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Colin Maclaurin
Colin Maclaurin (Kilmodan (Argyll and Bute), février 1698 - Édimbourg ) est un mathématicien écossais. Il fut professeur de mathématiques au Marischal College à Aberdeen de 1717 à 1725 et à l'université d'Édimbourg de 1725 à 1745. Il fit des travaux remarquables en géométrie, plus précisément dans l'étude de courbes planes. Il écrivit un important mémoire sur la théorie des marées. Maclaurin fut élu membre de la Royal Society en 1719 et, en 1724, il reçut un Grand prix de l'Académie royale des sciences pour son travail sur le choc des corps.
Série convergente
En mathématiques, une série est dite convergente si la suite de ses sommes partielles a une limite dans l'espace considéré. Dans le cas contraire, elle est dite divergente. Pour des séries numériques, ou à valeurs dans un espace de Banach — c'est-à-dire un espace vectoriel normé complet —, il suffit de prouver la convergence absolue de la série pour montrer sa convergence, ce qui permet de se ramener à une série à termes réels positifs. Pour étudier ces dernières, il existe une large variété de résultats, tous fondés sur le principe de comparaison.
Aimantation
Dans la langue courante, l'aimantation d'un objet est le fait qu'il soit aimanté ou bien le processus par lequel il le devient. En physique, l'aimantation est de plus, et surtout, une grandeur vectorielle qui caractérise à l'échelle macroscopique l'orientation et l'intensité de son aimantation au premier des deux sens précédents. Elle a comme origine les courants microscopiques résultant du mouvement des électrons dans l'atome (moment magnétique orbital des électrons), ainsi que le moment magnétique de spin des électrons ou des noyaux atomiques.
Conique
En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Demagnetizing field
The demagnetizing field, also called the stray field (outside the magnet), is the magnetic field (H-field) generated by the magnetization in a magnet. The total magnetic field in a region containing magnets is the sum of the demagnetizing fields of the magnets and the magnetic field due to any free currents or displacement currents. The term demagnetizing field reflects its tendency to act on the magnetization so as to reduce the total magnetic moment.
Série entière
En mathématiques et particulièrement en analyse, une série entière est une série de fonctions de la forme où les coefficients a forment une suite réelle ou complexe. Une explication de ce terme est qu'. Les séries entières possèdent des propriétés de convergence remarquables, qui s'expriment pour la plupart à l'aide de son rayon de convergence R, grandeur associée à la série. Sur le disque de convergence (disque ouvert de centre 0 et de rayon R), la fonction somme de la série peut être dérivée indéfiniment terme à terme.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.