Équation de la chaleurEn mathématiques et en physique théorique, l'équation de la chaleur est une équation aux dérivées partielles parabolique, pour décrire le phénomène physique de conduction thermique, introduite initialement en 1807 par Joseph Fourier, après des expériences sur la propagation de la chaleur, suivies par la modélisation de l'évolution de la température avec des séries trigonométriques, appelés depuis séries de Fourier et transformées de Fourier, permettant une grande amélioration à la modélisation mathématique
Norme (mathématiques)En géométrie, la norme est une extension de la valeur absolue des nombres aux vecteurs. Elle permet de mesurer la longueur commune à toutes les représentations d'un vecteur dans un espace affine, mais définit aussi une distance entre deux vecteurs invariante par translation et compatible avec la multiplication externe. La norme usuelle dans le plan ou l'espace est dite euclidienne car elle est associée à un produit scalaire, à la base de la géométrie euclidienne.
Spectre d'un opérateur linéaireEn mathématiques, plus précisément en analyse fonctionnelle, le spectre d'un opérateur linéaire sur un espace vectoriel topologique est l'ensemble de ses valeurs spectrales. En dimension finie, cet ensemble se réduit à l'ensemble des valeurs propres de cet endomorphisme, ou de sa matrice dans une base. En et en mécanique quantique, la notion de spectre s'étend aux opérateurs non bornés fermés. Soit une algèbre de Banach unifère sur le corps des nombres complexes.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Fonction impliciteEn mathématiques, une équation entre différentes variables où une variable n'est pas explicitée en fonction des autres est appelée une équation implicite. Une fonction implicite est une fonction qui se déduit implicitement d'une telle équation. Plus précisément si f est une fonction de E × F dans G, où E, F et G sont des espaces vectoriels normés ou plus simplement des intervalles de R, l'équation f(x,y) = 0 définit une fonction implicite si l'on peut exprimer une des variables en fonction de l'autre pour tous les couples (x,y) vérifiant l'équation.
Plan d'expériencesOn nomme plan d'expériences (en anglais, design of experiments ou DOE) la suite ordonnée d'essais d'une expérimentation, chacun permettant d'acquérir de nouvelles connaissances en maîtrisant un ou plusieurs paramètres d'entrée pour obtenir des résultats validant un modèle avec une bonne économie de moyens (nombre d'essais le plus faible possible, par exemple). Un exemple classique est le « plan en étoile » où en partant d'un jeu de valeurs choisi pour les paramètres d'un essai central, on complète celui-ci par des essais où chaque fois un seul des facteurs varie « toutes choses égales par ailleurs ».
Opérateur différentielEn mathématiques, et plus précisément en analyse, un opérateur différentiel est un opérateur agissant sur des fonctions différentiables. Lorsque la fonction est à une seule variable, l'opérateur différentiel est construit à partir des dérivées ordinaires. Lorsque la fonction est à plusieurs variables, l'opérateur différentiel est construit à partir des dérivées partielles. Un opérateur différentiel agissant sur deux fonctions est appelé opérateur bidifférentiel.
Théorème de Taylorredresse=1.5|vignette|Représentation de la fonction logarithme (en noir) et des approximations de Taylor au point 1 (en vert). En mathématiques, plus précisément en analyse, le théorème de Taylor (ou formule de Taylor), du nom du mathématicien anglais Brook Taylor qui l'établit en 1715, montre qu'une fonction plusieurs fois dérivable au voisinage d'un point peut être approchée par une fonction polynomiale dont les coefficients dépendent uniquement des dérivées de la fonction en ce point.
DérivabilitéUne fonction réelle d'une variable réelle est dérivable en un point a quand elle admet une dérivée finie en a, c'est-à-dire, intuitivement, quand elle peut être approchée de manière assez fine par une fonction affine au voisinage de a. Elle est dérivable sur un intervalle réel ouvert non vide si elle est dérivable en chaque point de cet intervalle. Elle est dérivable sur un intervalle réel fermé et borné (c'est-à-dire sur un segment réel) non réduit à un point si elle est dérivable sur l'intérieur de cet intervalle et dérivable à droite en sa borne gauche, et dérivable à gauche en sa borne droite.
Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.