Relation de dispersionEn physique théorique, une relation de dispersion est une relation entre la pulsation et le vecteur d'onde d'une onde monochromatique. Par extension, la dualité onde-corpuscule de la physique quantique conduit à l'introduction de relation de dispersion pour une particule, comme relation entre son énergie et sa quantité de mouvement . Un milieu non dispersif est caractérisé par un indice indépendant de la pulsation. La relation de dispersion s'écritavec le vecteur d'onde.
Cosmologie cordisteLa cosmologie cordiste est une approche de la cosmologie qui tente d'utiliser les résultats de la théorie des cordes. La cosmologie cordiste est liée à la cosmologie branaire. La cosmologie cordiste a tendance à plus insister sur les effets particuliers de la théorie des cordes que cette dernière, dans l'explication de l'inflation de l'Univers et de ses conséquences. De même, il s'agit d'un modèle qui prend en compte de possibles dimensions supplémentaire, dites enroulées. Catégorie:Modèle cosmologique Cat
Équation de SchrödingerL'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en mécanique quantique. Elle décrit l'évolution dans le temps d'une particule massive non relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique. Au début du , il était devenu clair que la lumière présentait une dualité onde-corpuscule, c'est-à-dire qu'elle pouvait se manifester, selon les circonstances, soit comme une particule, le photon, soit comme une onde électromagnétique.
Principe holographiquevignette|Cette image est une reconstruction assez fidèle d'une image du collecteur de Calabi-Yau qui apparaît comme une figure dans l'article : Leonard Susskind (novembre 2003). "Superstrings (Features : November 2003)". Physics World 16 (11). En physique théorique, le principe holographique est une conjecture spéculative dans le cadre de la théorie de la gravité quantique, proposée par Gerard 't Hooft en 1993 puis améliorée par Leonard Susskind en 1995. Son nom métaphorique vient de l'analogie avec l'holographie.
Opérateur de CasimirEn mathématiques, et plus spécifiquement en algèbre, l'opérateur de Casimir est un opérateur particulier. Plus précisément, étant donné une algèbre de Lie munie d'une forme bilinéaire non-dégénérée et invariante, et une représentation de dimension finie, l'opérateur de Casimir est une application linéaire continue particulière sur l'espace vectoriel de la représentation. Cet opérateur commute avec la représentation. Pour l'algèbre de Lie et la représentation étudiées, cet opérateur joue le rôle du laplacien.
Matrix ringIn abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication . The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. Any subring of a matrix ring is a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring Mn(R) is an associative algebra over R, and may be called a matrix algebra.
Matrices de PauliLes matrices de Pauli, développées par Wolfgang Pauli, forment, au facteur i près, une base de l'algèbre de Lie du groupe SU(2). Elles sont définies comme l'ensemble de matrices complexes de dimensions suivantes : (où i est l’unité imaginaire des nombres complexes). Ces matrices sont utilisées en mécanique quantique pour représenter le spin des particules, notamment dès 1927 dans l'étude non-relativiste du spin de l'électron : l'équation de Pauli.
Matrice par blocsvignette|Un matrice présente une structure par blocs si l'on peut isoler les termes non nuls dans des sous-matrices (ici la structure « diagonale par blocs » d'une réduite de Jordan). On appelle matrice par blocs une matrice divisée en blocs à partir d'un groupement quelconque de termes contigus de sa diagonale. Chaque bloc étant indexé comme on indicerait les éléments d'une matrice, la somme et le produit de deux matrices partitionnées suivant les mêmes tailles de bloc, s'obtiennent avec les mêmes règles formelles que celles des composantes (mais en veillant à l'ordre des facteurs dans les produits matriciels!).
UnitaritéEn mécanique quantique, l'unitarité désigne le fait que l'évolution de la fonction d'onde au cours du temps doit être compatible avec l'interprétation probabiliste qui lui est associée. La fonction d'onde d'un système quantique, comme l'électron par exemple, permet de déterminer la probabilité de présence de celui-ci dans une petite boîte de volume centrée en par Et comme la probabilité totale de trouver le système quelque part doit être de un, il en découle qu'on doit avoir en intégrant sur tout l'espace.
Informatique quantiqueL'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.