Anneau quotientEn mathématiques, un anneau quotient est un anneau qu'on construit sur l'ensemble quotient d'un anneau par un de ses idéaux bilatères. Soit A un anneau. L'addition et la multiplication de A sont compatibles avec une relation d'équivalence sur A si (et seulement si) celle-ci est de la forme : x ~ y ⇔ x – y ∈ I, pour un certain idéal bilatère I de A. On peut alors munir l'ensemble quotient A/I de l'addition et de la multiplication quotients de celles de A : Ceci munit A/I d'une structure d'anneau, appelé l'anneau quotient de A par I (son groupe additif est le groupe quotient de (A, +) par I).
Anneau (mathématiques)vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
Groupe des classes d'idéauxEn mathématiques, et plus précisément en algèbre, la théorie des corps de nombres – les extensions finies du corps Q des rationnels – fait apparaître un groupe abélien fini construit à partir de chacun de ces corps : son groupe des classes d'idéaux. Les premiers groupes de classes rencontrés en algèbre furent des groupes de classes de formes quadratiques : dans le cas des formes quadratiques binaires, dont l'étude a été faite par Gauss, une loi de composition est définie sur certaines classes d'équivalence de formes.
Théorie des corps de classesvignette|Les racines cinquièmes de l'unité dans le plan complexe. Ajouter ces racines aux nombres rationnels génère une extension abélienne. En mathématiques, la théorie des corps de classes est une branche majeure de la théorie algébrique des nombres qui a pour objet la classification des extensions abéliennes, c'est-à-dire galoisiennes et de groupe de Galois commutatif, d'un corps commutatif donné. Plus précisément, il s'agit de décrire et de construire ces extensions en termes de propriétés arithmétiques du corps de base lui-même.
Entier algébriqueEn mathématiques, un entier algébrique est un élément d'un corps de nombres qui y joue un rôle analogue à celui d'un entier relatif dans le corps des nombres rationnels. L'étude des entiers algébriques est à la base de l'arithmétique des corps de nombres, et de la généralisation dans ces corps de notions comme celles de nombre premier ou de division euclidienne. Par définition, un entier algébrique est une racine d'un polynôme unitaire à coefficients dans Z.
Corps des fractionsEn théorie des anneaux, le corps des fractions d'un anneau intègre A est le plus petit corps commutatif (à isomorphisme près) contenant A. Sa construction est une généralisation à un anneau de la construction du corps des rationnels à partir de l'anneau des entiers relatifs. Appliqué à un anneau de polynômes, il permet la construction de son corps des fractions rationnelles. Cette construction se généralise encore avec le procédé de localisation.
Nombre algébriqueUn nombre algébrique, en mathématiques, est un nombre complexe solution d'une équation polynomiale à coefficients dans le corps des rationnels (autrement dit racine d'un polynôme non nul à coefficients rationnels). Les nombres entiers et rationnels sont algébriques, ainsi que toutes les racines de ces nombres. Les nombres complexes qui ne sont pas algébriques, comme π et e (théorème de Lindemann-Weierstrass), sont dits transcendants. L'étude de ces nombres, de leurs polynômes minimaux et des corps qui les contiennent fait partie de la théorie de Galois.
Petersson inner productIn mathematics the Petersson inner product is an inner product defined on the space of entire modular forms. It was introduced by the German mathematician Hans Petersson. Let be the space of entire modular forms of weight and the space of cusp forms. The mapping , is called Petersson inner product, where is a fundamental region of the modular group and for is the hyperbolic volume form. The integral is absolutely convergent and the Petersson inner product is a positive definite Hermitian form.
Anneau adéliqueEn mathématiques et dans la théorie des nombres, l'anneau adélique, ou anneau des adèles, est un anneau topologique contenant le corps des nombres rationnels (ou, plus généralement, un corps de nombres algébriques), construit à l'aide de toutes les complétions du corps. Le mot « adèle » est une abréviation pour « additive idele » (« idèle additive »). . Les adèles étaient appelées vecteurs de valuation ou répartitions avant 1950.
Discriminant d'un corps de nombresdroite|vignette|upright=1.6|Un domaine fondamental de l'anneau des entiers du corps K obtenu à partir de en adjoignant une racine de . Ce domaine fondamental se trouve à l'intérieur de . Le discriminant de K est 49 = 7. En conséquence, le volume du domaine fondamental est 7 et K n'est ramifié qu'en 7. En mathématiques, le discriminant d'un corps de nombres est un invariant numérique qui, moralement, mesure la taille de l'anneau des entiers de ce corps de nombres.