RenormalisationEn théorie quantique des champs (ou QFT), en mécanique statistique des champs, dans la théorie des structures géométriques autosimilaires, une renormalisation est une manière, variable dans sa nature, de prendre la limite du continu quand certaines constructions statistiques et quantiques deviennent indéfinies. La renormalisation détermine la façon de relier les paramètres de la théorie quand ces paramètres à grande échelle diffèrent de leur valeur à petite échelle.
Histoire de la théorie quantique des champsCet article résume l'histoire de la théorie quantique des champs. La théorie quantique des champs est l'application des concepts de la physique quantique aux champs. Issue de la mécanique quantique relativiste, dont l'interprétation comme théorie décrivant une seule particule s'était avérée incohérente, la théorie quantique des champs fournit un cadre conceptuel largement utilisé en physique des particules, en physique de la matière condensée, et en physique statistique.
Dualité de HodgeEn algèbre linéaire, l'opérateur de Hodge, introduit par William Vallance Douglas Hodge, est un opérateur sur l'algèbre extérieure d'un espace vectoriel euclidien orienté. Il est usuellement noté par une étoile qui précède l'élément auquel l'opérateur est appliqué. On parle ainsi d'étoile de Hodge. Si la dimension de l'espace est n, l'opérateur établit une correspondance entre les k-vecteurs et les (n-k)-vecteurs, appelée dualité de Hodge. En géométrie différentielle, l'opérateur de Hodge peut être étendu aux fibrés vectoriels riemanniens orientés.
Scalar field theoryIn theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation. The only fundamental scalar quantum field that has been observed in nature is the Higgs field. However, scalar quantum fields feature in the effective field theory descriptions of many physical phenomena. An example is the pion, which is actually a pseudoscalar.
Exact solutions in general relativityIn general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field.
Dérivée partielleEn mathématiques, la dérivée partielle d'une fonction de plusieurs variables est sa dérivée par rapport à l'une de ses variables, les autres étant gardées constantes. C'est une notion de base de l'analyse en dimension , de la géométrie différentielle et de l'analyse vectorielle. La dérivée partielle de la fonction par rapport à la variable est souvent notée . Si est une fonction de et sont les accroissements infinitésimaux de respectivement, alors l'accroissement infinitésimal correspondant de est : Cette expression est la « différentielle totale » de , chaque terme dans la somme étant une « différentielle partielle » de .
Exponentielle de base aEn analyse réelle, l'exponentielle de base est la fonction notée exp qui, à tout réel x, associe le réel a. Elle n'a de sens que pour un réel a strictement positif. Elle étend à l'ensemble des réels la fonction, définie sur l'ensemble des entiers naturels, qui à l'entier n associe a. C'est donc la version continue d'une suite géométrique. Elle s'exprime à l'aide des fonctions usuelles exponentielle et logarithme népérien sous la forme Elle peut être définie comme la seule fonction continue sur R, prenant la valeur a en 1 et transformant une somme en produit.
Fonction monotoneEn mathématiques, une fonction monotone est une fonction entre ensembles ordonnés qui préserve ou renverse l'ordre. Dans le premier cas, on parle de fonction croissante et dans l'autre de fonction décroissante. Ce concept est tout d'abord apparu en analyse réelle pour les fonctions numériques et a été généralisé ensuite dans le cadre plus abstrait de la théorie des ordres. Intuitivement (voir les figures ci-contre), la représentation graphique d'une fonction monotone sur un intervalle est une courbe qui « monte » constamment ou « descend » constamment.
Théorème de GreenEn mathématiques, le théorème de Green, ou théorème de Green-Riemann, donne la relation entre une intégrale curviligne le long d'une courbe simple fermée orientée C par morceaux et l'intégrale double sur la région du plan délimitée par cette courbe. Ce théorème, nommé d'après George Green et Bernhard Riemann, est un cas particulier du théorème de Stokes. thumb|upright=0.9|Domaine délimité par une courbe régulière par morceaux. Vu comme cas particulier du théorème de Stokes, le théorème s'écrit sous la forme suivante, en notant ∂D la courbe C et ω la forme différentielle.
Logarithme naturelLe logarithme naturel ou logarithme népérien, ou encore logarithme hyperbolique jusqu'au , transforme, comme les autres fonctions logarithmes, les produits en sommes. L'utilisation de telles fonctions permet de faciliter les calculs comprenant de nombreuses multiplications, divisions et élévations à des puissances rationnelles. Il est souvent noté ln(). Le logarithme naturel ou népérien est dit de base e car ln(e) = 1. Le logarithme népérien d'un nombre x peut également être défini comme la puissance à laquelle il faut élever e pour obtenir x.