Polynôme minimal (théorie des corps)thumb|Carl Friedrich Gauss utilise des polynômes minimaux appelés cyclotomiques pour déterminer les polygones constructibles à la règle et au compas. En théorie des corps, le polynôme minimal sur un corps commutatif K d'un élément algébrique d'une extension de K, est le polynôme unitaire de degré minimal parmi les polynômes à coefficients dans le corps de base K qui annulent l'élément. Il divise tous ces polynômes. C'est toujours un polynôme irréductible.
Fonction zêta de Hurwitzvignette|Fonction zêta de Hurwitz En mathématiques, la fonction zêta de Hurwitz est une des nombreuses fonctions zêta. Elle est définie, pour toute valeur q du paramètre, nombre complexe de partie réelle strictement positive, par la série suivante, convergeant vers une fonction holomorphe sur le demi-plan des complexes s tels que Re(s) > 1 : Par prolongement analytique, s'étend en une fonction méromorphe sur le plan complexe, d'unique pôle s = 1. est la fonction zêta de Riemann. où Γ désigne la fonction Gamma.
Hypothèse de Riemann généraliséeL'hypothèse de Riemann est l'une des plus importantes conjectures des mathématiques et concerne les zéros de la fonction ζ de Riemann. Divers objets géométriques et arithmétiques peuvent être décrits par ce que l'on appelle les fonctions L globales, qui sont similaires formellement à la fonction zêta de Riemann. On peut alors se poser la même question à propos des zéros de ces fonctions L, fournissant diverses généralisations de l'hypothèse de Riemann.
Degenerate distributionIn mathematics, a degenerate distribution is, according to some, a probability distribution in a space with support only on a manifold of lower dimension, and according to others a distribution with support only at a single point. By the latter definition, it is a deterministic distribution and takes only a single value. Examples include a two-headed coin and rolling a die whose sides all show the same number. This distribution satisfies the definition of "random variable" even though it does not appear random in the everyday sense of the word; hence it is considered degenerate.
Polynôme symétriqueEn mathématiques, un polynôme symétrique est un polynôme en plusieurs indéterminées, invariant par permutation de ses indéterminées. Ils jouent notamment un rôle dans les relations entre coefficients et racines. Soit A un anneau commutatif unitaire. Un polynôme Q(T, ..., T) en n indéterminées à coefficients dans A est dit symétrique si pour toute permutation s de l'ensemble d'indices {1, ..., n}, l'égalité suivante est vérifiée : Exemples Pour n = 1, tout polynôme est symétrique.
Nombre semi-premierEn arithmétique, un nombre semi-premier ou bi-premier ou 2-presque premier, est le produit de deux nombres premiers non nécessairement distincts. Les dix premiers termes de la suite des nombres semi-premiers () sont 4, 6, 9, 10, 14, 15, 21, 22, 25 et 26. Depuis 2018, le plus grand nombre semi-premier connu, (2 – 1), est logiquement le carré du plus grand nombre premier connu qui est le nombre premier de Mersenne M. Ce carré a plus de de chiffres décimaux.
Extension de corpsEn mathématiques, plus particulièrement en algèbre, une extension d'un corps commutatif K est un corps L qui contient K comme sous-corps. Par exemple, le corps C des nombres complexes est une extension du corps R des nombres réels, lequel est lui-même une extension du corps Q des nombres rationnels. On note parfois L/K pour indiquer que L est une extension de K. Soit K un corps. Une extension de K est un couple (L, j) où L est un corps et j un morphisme de corps de K dans L (les morphismes de corps étant systématiquement injectifs).
Décomposition des idéaux premiers dans les extensions galoisiennesEn mathématiques, l'interaction entre le groupe de Galois G d'une extension galoisienne de corps de nombres L/K (ou de corps de nombres p-adiques, ou de corps de fonctions), et la manière dont les idéaux premiers de l'anneau O des entiers se décomposent sous forme de produits d'idéaux premiers de O, est à la base de nombreux développements fructueux en théorie algébrique des nombres. Le cas d'une extension non nécessairement galoisienne est traitée dans l'article « Décomposition des idéaux premiers ».
Nombre de Fermatthumb|Le mathématicien français Pierre de Fermat (1601-1665) étudia les propriétés des nombres portant maintenant son nom. Un nombre de Fermat est un nombre qui peut s'écrire sous la forme 22n + 1, avec n entier naturel. Le n-ième nombre de Fermat, 22n + 1, est noté Fn. Ces nombres doivent leur nom à Pierre de Fermat, qui émit la conjecture que tous ces nombres étaient premiers. Cette conjecture se révéla fausse, F5 étant composé, de même que tous les suivants jusqu'à F32.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.