The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source.
FETs are also known as unipolar transistors since they involve single-carrier-type operation. That is, FETs use either electrons (n-channel) or holes (p-channel) as charge carriers in their operation, but not both. Many different types of field effect transistors exist. Field effect transistors generally display very high input impedance at low frequencies. The most widely used field-effect transistor is the MOSFET (metal–oxide–semiconductor field-effect transistor).
The concept of a field-effect transistor (FET) was first patented by the Austro-Hungarian born physicist Julius Edgar Lilienfeld in 1925 and by Oskar Heil in 1934, but they were unable to build a working practical semiconducting device based on the concept. The transistor effect was later observed and explained by John Bardeen and Walter Houser Brattain while working under William Shockley at Bell Labs in 1947, shortly after the 17-year patent expired. Shockley initially attempted to build a working FET by trying to modulate the conductivity of a semiconductor, but was unsuccessful, mainly due to problems with the surface states, the dangling bond, and the germanium and copper compound materials. In the course of trying to understand the mysterious reasons behind their failure to build a working FET, it led to Bardeen and Brattain instead inventing the point-contact transistor in 1947, which was followed by Shockley's bipolar junction transistor in 1948.
The first FET device to be successfully built was the junction field-effect transistor (JFET). A JFET was first patented by Heinrich Welker in 1945. The static induction transistor (SIT), a type of JFET with a short channel, was invented by Japanese engineers Jun-ichi Nishizawa and Y.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In depth analysis of the operation principles and technology of advanced micro- and nanosystems. Familiarisation to their implementation into products and their applications.
Students will learn about understanding the fundamentals and applications of emerging nanoscale devices, materials and concepts.Remark: at least 5 students should be enrolled for the course to be g
A metal gate, in the context of a lateral metal–oxide–semiconductor (MOS) stack, is the gate electrode separated by an oxide from the transistor's channel – the gate material is made from a metal. In most MOS transistors since about the mid 1970s, the "M" for metal has been replaced by a non-metal gate material. The first MOSFET (metal–oxide–semiconductor field-effect transistor) was made by Mohamed Atalla and Dawon Kahng at Bell Labs in 1959, and demonstrated in 1960. They used silicon as channel material and a non-self-aligned aluminum gate.
In chemistry, a dangling bond is an unsatisfied valence on an immobilized atom. An atom with a dangling bond is also referred to as an immobilized free radical or an immobilized radical, a reference to its structural and chemical similarity to a free radical. When speaking of a dangling bond, one is generally referring to the state described above, containing one electron and thus leading to a neutrally charged atom. There are also dangling bond defects containing two or no electrons.
A transistor is a semiconductor device with at least three terminals for connection to an electric circuit. In the common case, the third terminal controls the flow of current between the other two terminals. This can be used for amplification, as in the case of a radio receiver, or for rapid switching, as in the case of digital circuits. The transistor replaced the vacuum-tube triode, also called a (thermionic) valve, which was much larger in size and used significantly more power to operate.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
In the past decades, a significant increase of the transistor density on a chip has led to exponential growth in computational power driven by Moore's law. To overcome the bottleneck of traditional von-Neumann architecture in computational efficiency, effo ...
EPFL2024
,
The engineering of tin halide perovskites has led to the development of p-type transistors with field-effect mobilities of over 70 cm2 V-1 s-1. However, due to their background hole doping, these perovskites are not suitable for n-type transistors. Ambipol ...
We introduce a new family of single-photon avalanche diodes (SPADs) with enhanced depletion regions in a 55-nm Bipolar-CMOS-DMOS (BCD) technology. We demonstrate how to systematically engineer doping profiles in the main junction and in deep p-well layers ...