Summary
In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; in particular, every local martingale that is bounded from below is a supermartingale, and every local martingale that is bounded from above is a submartingale; however, in general a local martingale is not a martingale, because its expectation can be distorted by large values of small probability. In particular, a driftless diffusion process is a local martingale, but not necessarily a martingale. Local martingales are essential in stochastic analysis (see Itō calculus, semimartingale, and Girsanov theorem). Let be a probability space; let be a filtration of ; let be an -adapted stochastic process on the set . Then is called an -local martingale if there exists a sequence of -stopping times such that the are almost surely increasing: ; the diverge almost surely: ; the stopped process is an -martingale for every . Let Wt be the Wiener process and T = min{ t : Wt = −1 } the time of first hit of −1. The stopped process Wmin{ t, T } is a martingale; its expectation is 0 at all times, nevertheless its limit (as t → ∞) is equal to −1 almost surely (a kind of gambler's ruin). A time change leads to a process The process is continuous almost surely; nevertheless, its expectation is discontinuous, This process is not a martingale. However, it is a local martingale. A localizing sequence may be chosen as if there is such t, otherwise . This sequence diverges almost surely, since for all k large enough (namely, for all k that exceed the maximal value of the process X). The process stopped at τk is a martingale. Let Wt be the Wiener process and ƒ a measurable function such that Then the following process is a martingale: here The Dirac delta function (strictly speaking, not a function), being used in place of leads to a process defined informally as and formally as where The process is continuous almost surely (since almost surely), nevertheless, its expectation is discontinuous, This process is not a martingale.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (7)
MATH-431: Theory of stochastic calculus
Introduction to the mathematical theory of stochastic calculus: construction of stochastic Ito integral, proof of Ito formula, introduction to stochastic differential equations, Girsanov theorem and F
COM-417: Advanced probability and applications
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
MATH-487: Topics in stochastic analysis
This course offers an introduction to topics in stochastic analysis, oriented about theory of multi-scale stochastic dynamics. We shall learn the fundamental ideas, relevant techniques, and in general
Show more