In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable.
Given two manifolds and , a differentiable map is called a diffeomorphism if it is a bijection and its inverse is differentiable as well. If these functions are times continuously differentiable, is called a -diffeomorphism.
Two manifolds and are diffeomorphic (usually denoted ) if there is a diffeomorphism from to . They are -diffeomorphic if there is an times continuously differentiable bijective map between them whose inverse is also times continuously differentiable.
Given a subset of a manifold and a subset of a manifold , a function is said to be smooth if for all in there is a neighborhood of and a smooth function such that the restrictions agree: (note that is an extension of ). The function is said to be a diffeomorphism if it is bijective, smooth and its inverse is smooth.
Hadamard-Caccioppoli Theorem
If , are connected open subsets of such that is simply connected, a differentiable map is a diffeomorphism if it is proper and if the differential is bijective (and hence a linear isomorphism) at each point in .
First remark
It is essential for to be simply connected for the function to be globally invertible (under the sole condition that its derivative be a bijective map at each point). For example, consider the "realification" of the complex square function
Then is surjective and it satisfies
Thus, though is bijective at each point, is not invertible because it fails to be injective (e.g. ).
Second remark
Since the differential at a point (for a differentiable function)
is a linear map, it has a well-defined inverse if and only if is a bijection. The matrix representation of is the matrix of first-order partial derivatives whose entry in the -th row and -th column is . This so-called Jacobian matrix is often used for explicit computations.
Third remark
Diffeomorphisms are necessarily between manifolds of the same dimension.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.
In mathematics, a Lie group (pronounced liː ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction).
Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
We propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspen
Elastic surfaces that morph between multiple geometrical configurations are of significant engineering value, with applications ranging from the deployment of space-based PV arrays, the erection of temporary shelters, and the realization of flexible displa ...
2022
We discuss anomalies associated with outer automorphisms in gauge theories based on classical groups, namely charge conjugations for SU(N) and parities for SO(2r). We emphasize the inequivalence (yet related by a flavor transformation) between two versions ...
We determine the bounded cohomology of the group of homeomorphisms of certain low-dimensional manifolds. In particular, for the group of orientation-preserving homeomorphisms of the circle and of the closed 2-disc, it is isomorphic to the polynomial ring g ...