Geometric Brownian motionA geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.
Martingale (calcul stochastique)Une martingale est une séquence de variables aléatoires (autrement dit un processus stochastique), telles que l'espérance mathématique à l'instant , conditionnellement à l'information disponible à un moment préalable , notée , vaut (avec ). En particulier, dans un processus discret (t entier), . Une martingale peut modéliser les gains / pertes accumulés par un joueur au cours de répétitions indépendantes d'un jeu de hasard à espérance nulle (même si le joueur s'autorise à modifier sa mise en fonction des gains passés), d'où l'emprunt du terme martingale au monde du jeu.
Fixed-point iterationIn numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.
Intégrale de StratonovichEn calcul stochastique, l'intégrale de Stratonovich (aussi intégrale de Fisk-Stratonovich) est un type d'intégrale stochastique. Contrairement à l'intégrale d'Itô, où seul le point final gauche de l'intervalle de décomposition est nécessaire pour la construction dans l'intégrale de Stratonovich, on utilise la moyenne arithmétique des extrémités gauche et droite L'avantage de l'intégrale de Stratonovich sur l'intégrale d'Itô est que la formule d'Itô n'a que des différentiels du premier ordre.
Opérateur différentielEn mathématiques, et plus précisément en analyse, un opérateur différentiel est un opérateur agissant sur des fonctions différentiables. Lorsque la fonction est à une seule variable, l'opérateur différentiel est construit à partir des dérivées ordinaires. Lorsque la fonction est à plusieurs variables, l'opérateur différentiel est construit à partir des dérivées partielles. Un opérateur différentiel agissant sur deux fonctions est appelé opérateur bidifférentiel.
Application lipschitzienneEn analyse mathématique, une application lipschitzienne (du nom de Rudolf Lipschitz) est une application possédant une certaine propriété de régularité qui est plus forte que la continuité. Intuitivement, c'est une fonction qui est limitée dans sa manière d'évoluer. Tout segment reliant deux points du graphe d'une telle fonction aura une pente inférieure, en valeur absolue, à une constante appelée constante de Lipschitz. Les fonctions lipschitziennes sont un cas particulier de fonctions höldériennes.
Méthode de variation des constantesEn mathématiques, et plus précisément en analyse, la méthode de variation des constantes (ou méthode de Lagrange) est une méthode de résolution des équations différentielles. Elle permet en particulier de déterminer les solutions d'une équation différentielle avec second membre, connaissant les solutions de l'équation homogène (c'est-à-dire sans second membre) associée. La méthode a été inventée par le mathématicien et physicien Pierre-Simon de Laplace, pour la résolution des équations différentielles linéaires.
Séparation des variablesEn mathématiques, la séparation des variables constitue l'une des méthodes de résolution des équations différentielles partielles et ordinaires, lorsque l'algèbre permet de réécrire l'équation de sorte que chacune des deux variables apparaisse dans un membre distinct de l'équation. Supposons qu'une équation différentielle puisse être écrite de la forme suivante et pour tout x : que l'on peut écrire plus simplement en identifiant : Tant que h(y) ≠ 0, on peut réécrire les termes de l'équation pour obtenir : séparant donc les variables x et y.
Système de fonctions itéréesvignette|Attracteur de deux similitudes et . En mathématiques, un système de fonctions itérées (SFI ou encore IFS, acronyme du terme anglais Iterated Function System) est un outil pour construire des fractales. Plus précisément, l'attracteur d'un système de fonctions itérées est une forme fractale autosimilaire faite de la réunion de copies d'elle-même, chaque copie étant obtenue en transformant l'une d'elles par une fonction du système. La théorie a été formulée lors d'un séjour à l'université de Princeton par John Hutchinson en 1980.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.