Banach fixed-point theoremIn mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach-Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces, and provides a constructive method to find those fixed points. It can be understood as an abstract formulation of Picard's method of successive approximations. The theorem is named after Stefan Banach (1892–1945) who first stated it in 1922.
Processus de WienerEn mathématiques, le processus de Wiener est un processus stochastique à temps continu nommé ainsi en l'honneur de Norbert Wiener. Il permet de modéliser le mouvement brownien. C'est l'un des processus de Lévy les mieux connus. Il est souvent utilisé en mathématique appliquée, en économie et en physique. Le processus de Wiener est défini comme un mouvement brownien standard monodimensionnel, démarrant à l'origine, et à valeurs réelles.
Lemme d'ItōLe lemme d'Itō, ou formule d'Itō, est l'un des principaux résultats de la théorie du calcul stochastique, qui permet d'exprimer la différentielle d'une fonction d'un processus stochastique au cours du temps. Ce lemme offre un moyen de manipuler le mouvement brownien ou les solutions d'équations différentielles stochastiques (EDS). La formule d'Itō a été démontrée pour la première fois par le mathématicien japonais Kiyoshi Itō dans les années 1940.
Liste de théorèmes du point fixeEn analyse, un théorème du point fixe donne des conditions suffisantes d’existence d’un point fixe pour une fonction ou une famille de fonctions. Plus précisément, étant donné un ensemble E et une famille de fonctions f définies sur E et à valeurs dans E, ces théorèmes permettent de justifier qu’il existe un élément x de E tel que pour toutes les fonctions considérées on ait . Certains de ces théorèmes fournissent même un processus itératif permettant d’approcher un tel point fixe.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Martingale localeDans la théorie des processus stochastiques, une martingale locale est un processus stochastique qui est localement une martingale, ce qui signifie qu'il y a une suite de localisation de temps d'arrêt et que le processus arrêté est une martingale. Soi un espace de probabilité filtré et un processus -adapté avec (zéro à zéro). S'il existe une suite non décroissante de temps d'arrêt de telle que et pour tout le processus arrêté défini par soit une martingale, alors on appelle une martingale locale et on écrit .
Équation différentielle linéaireUne équation différentielle linéaire est un cas particulier d'équation différentielle pour lequel on peut appliquer des procédés de superposition de solutions, et exploiter des résultats d'algèbre linéaire. De nombreuses équations différentielles de la physique vérifient la propriété de linéarité. De plus, les équations différentielles linéaires apparaissent naturellement en perturbant une équation différentielle (non linéaire) autour d'une de ses solutions.
Équation des ondesL' ou est une équation aux dérivées partielles en physique qui régit la propagation d'une onde. C'est une équation vérifiée par de nombreux phénomènes ondulatoires de la vie courante comme le son ou la lumière. avec : l'opérateur laplacien ; l'onde vectorielle; une constante, vitesse de propagation de dans le milieu considéré ; L'utilisation du laplacien permet de s'affranchir du choix d'un système de coordonnées. avec : l'opérateur de dérivée partielle seconde en appliqué sur ; , les trois variables cartésiennes de l'espace, et celle du temps.
Théorème de GirsanovDans la théorie des probabilités, le théorème de Girsanov indique comment un processus stochastique change si l'on change de mesure. Ce théorème est particulièrement important dans la théorie des mathématiques financières dans le sens où il donne la manière de passer de la probabilité historique qui décrit la probabilité qu'un actif sous-jacent (comme le prix d'une action ou un taux d'intérêt) prenne dans le futur une valeur donnée à la probabilité risque neutre qui est un outil très utile pour évaluer la valeur d'un dérivé du sous-jacent.
Équation de Helmholtzvignette|Application de l'équation de Helmholtz. Léquation de Helmholtz (d'après le physicien Hermann von Helmholtz) est une équation aux dérivées partielles elliptique qui apparaît lorsque l'on cherche des solutions harmoniques de l'équation de propagation des ondes de D'Alembert, appelées « modes propres », sur un domaine : Pour que le problème mathématique soit bien posé, il faut spécifier une condition aux limites sur le bord du domaine, par exemple : une condition de Dirichlet, une condition de Neumann, un mélange des deux précédentes etc.