Topologie finaleEn mathématiques et plus précisément en topologie, la topologie finale, sur un ensemble d'arrivée commun à une famille d'applications définies chacune sur un espace topologique, est la topologie la plus fine pour laquelle toutes ces applications sont continues. La notion duale est celle de topologie initiale. Soient X un ensemble, (Y) une famille d'espaces topologiques et pour chaque indice i ∈ I, une application f : Y → X. La topologie finale sur X associée à la famille (f) est la plus fine des topologies sur X pour lesquelles chaque f est continue.
Mathématiquesthumb|upright|Raisonnement mathématique sur un tableau. Les mathématiques (ou la mathématique) sont un ensemble de connaissances abstraites résultant de raisonnements logiques appliqués à des objets divers tels que les ensembles mathématiques, les nombres, les formes, les structures, les transformations ; ainsi qu'aux relations et opérations mathématiques qui existent entre ces objets. Elles sont aussi le domaine de recherche développant ces connaissances, ainsi que la discipline qui les enseigne.
Espace de LindelöfEn mathématiques, un espace de Lindelöf est un espace topologique dont tout recouvrement ouvert possède un sous-recouvrement dénombrable. Cette condition est un affaiblissement de la quasi-compacité, dans laquelle on demande l'existence de sous-recouvrements finis. Un espace est dit héréditairement de Lindelöf si tous ses sous-espaces sont de Lindelöf. Il suffit pour cela que ses ouverts le soient. Les espaces de Lindelöf sont nommés d'après le mathématicien finlandais Ernst Leonard Lindelöf.
Théorème de BaireLe théorème de Baire, dit aussi lemme de Baire, est un théorème de topologie dû au mathématicien René Baire. On dit qu'un espace topologique est un espace de Baire si toute intersection dénombrable d'ouverts denses est dense. De façon équivalente, un espace topologique est de Baire si toute union dénombrable de fermés d'intérieurs vides est d'intérieur vide, ou encore, si le seul ouvert maigre est le vide. Le lemme (ou théorème) de Baire donne des conditions suffisantes pour que certains espaces soient de Baire.
Analyse non standardEn mathématiques, et plus précisément en analyse, l'analyse non standard est un ensemble d'outils développés depuis 1960 afin de traiter la notion d'infiniment petit de manière rigoureuse. Pour cela, une nouvelle notion est introduite, celle d'objet standard (s'opposant à celle d'objet non standard), ou plus généralement de modèle standard ou de modèle non standard. Cela permet de présenter les principaux résultats de l'analyse sous une forme plus intuitive que celle exposée traditionnellement depuis le .
Fonction de WeierstrassLa fonction de Weierstrass, aussi appelée fonction de Weierstrass-Hardy, fut en 1872 le premier exemple publié d'une fonction réelle d'une variable réelle qui est continue partout, mais dérivable nulle part. On le doit à Karl Weierstrass et Leopold Kronecker ; les hypothèses ont été améliorées par G. H. Hardy.vignette|Évolution de la courbe de la fonction de Weierstrass lors d'une augmentation linéaire de la valeur de b de 0,1 à 5, pour a fixé égal à 0,5. la non-dérivabilité démarre à b = 2.
Intégrale de LebesgueEn mathématiques, l’intégrale de Lebesgue désigne à la fois une théorie relative à l'intégration et à la mesure, et le résultat de l'intégration d'une fonction à valeurs réelles définie sur (ou sur ) muni de la mesure de Lebesgue. Généralisant l'intégrale de Riemann, l'intégrale de Lebesgue joue un rôle important en analyse, en théorie des probabilités et dans beaucoup d'autres domaines des mathématiques. Dans les cas simples, l'intégrale d'une fonction positive f peut être vue comme l'aire comprise entre l'axe des x (l'axe horizontal) et la courbe de la fonction f.
Espace fonctionnelEn mathématiques, un espace fonctionnel est un ensemble d'applications d'une certaine forme d'un ensemble vers un ensemble Il est appelé « espace » car, selon les cas, il peut être un espace topologique, un espace vectoriel, ou les deux. Les espaces fonctionnels apparaissent dans différents domaines des mathématiques : en théorie des ensembles, l'ensemble des parties d'un ensemble peut être identifié avec l'ensemble des fonctions de à valeurs dans , noté .
Augustin Louis CauchyAugustin Louis, baron Cauchy, né à Paris le et mort à Sceaux le , est un mathématicien français, membre de l’Académie des sciences et professeur à l’École polytechnique. Catholique fervent, il est le fondateur de nombreuses œuvres charitables, dont l’Œuvre des Écoles d’Orient. Royaliste légitimiste, il s’exile volontairement lors de l'avènement de Louis-Philippe, après les Trois Glorieuses. Ses positions politiques et religieuses lui valurent nombre d’oppositions.
Limite supérieure et limite inférieurevignette|upright=1.8|Exemple de recherche de limites inférieure et supérieure. La suite (x) est représentée en bleu. En mathématiques, plus précisément en analyse réelle, les limites inférieures et supérieures sont des outils d'étude des suites de nombres réels. Une telle suite n'est en général ni monotone, ni convergente. L'introduction des limites supérieure et inférieure permet de retrouver, partiellement, de telles propriétés. Il s'agit d'un cas particulier de valeurs d'adhérence de la suite.