Loi stableLa loi stable ou loi de Lévy tronquée, nommée d'après le mathématicien Paul Lévy, est une loi de probabilité utilisée en mathématiques, physique et analyse quantitative (finance de marché). On dit qu'une variable aléatoire réelle est de loi stable si elle vérifie l'une des 3 propriétés équivalentes suivantes : Pour tous réels strictement positifs et , il existe un réel strictement positif et un réel tels que les variables aléatoires et aient la même loi, où et sont des copies indépendantes de .
Loi du χ²En statistiques et en théorie des probabilités, la loi du centrée (prononcé « khi carré » ou « khi-deux ») avec k degrés de liberté est la loi de la somme de carrés de k lois normales centrées réduites indépendantes. La loi du est utilisée en inférence statistique et pour les tests statistiques notamment le test du χ2. La loi du χ2 non centrée généralise la loi du . Soient k variables aléatoires X, ... , X indépendantes suivant la loi normale centrée et réduite, c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.
Inégalité de HoeffdingEn théorie des probabilités, l’inégalité de Hoeffding est une inégalité de concentration concernant les sommes de variables aléatoires indépendantes et bornées. Elle tire son nom du mathématicien et statisticien finlandais Wassily Hoeffding. Il existe une version plus générale de cette inégalité, concernant une somme d'accroissements de martingales, accroissements là encore bornés : cette version plus générale est parfois connue sous le nom d'inégalité d'Azuma-Hoeffding.
Conditional varianceIn probability theory and statistics, a conditional variance is the variance of a random variable given the value(s) of one or more other variables. Particularly in econometrics, the conditional variance is also known as the scedastic function or skedastic function. Conditional variances are important parts of autoregressive conditional heteroskedasticity (ARCH) models. The conditional variance of a random variable Y given another random variable X is The conditional variance tells us how much variance is left if we use to "predict" Y.
Intraclass correlationIn statistics, the intraclass correlation, or the intraclass correlation coefficient (ICC), is a descriptive statistic that can be used when quantitative measurements are made on units that are organized into groups. It describes how strongly units in the same group resemble each other. While it is viewed as a type of correlation, unlike most other correlation measures, it operates on data structured as groups rather than data structured as paired observations.
Censure (statistiques)En fiabilité, la censure est le fait de prendre en compte des systèmes non-défaillants pour établir la loi de fiabilité. Plus généralement, le terme s'applique lorsque l'on ne connaît pas avec précision la date de défaillance, soit que la défaillance ne soit pas encore survenue, soit qu'elle n'ait pas été enregistrée avec précision. La censure est une information qui doit être intégrée dans le modèle de fiabilité, même si cette information est moins riche qu'un instant de défaillance défini.
Loi zêtaEn théorie de probabilité et statistiques, la distribution zêta est une loi discrète de paramètre . On dit qu'une variable aléatoire suit une loi zêta de paramètre si : où est la fonction zêta de Riemann non définie en 1. Une loi zêta est un sous cas de la loi de Zipf où le paramètre N est infini. Le n-ième moment est défini par l'espérance de Xn : La série de droite est une représentation de la fonction zêta de Riemann et converge seulement pour les valeurs de s-n strictement supérieures à 1.
HyperparameterIn Bayesian statistics, a hyperparameter is a parameter of a prior distribution; the term is used to distinguish them from parameters of the model for the underlying system under analysis. For example, if one is using a beta distribution to model the distribution of the parameter p of a Bernoulli distribution, then: p is a parameter of the underlying system (Bernoulli distribution), and α and β are parameters of the prior distribution (beta distribution), hence hyperparameters.
Segmented regressionSegmented regression, also known as piecewise regression or broken-stick regression, is a method in regression analysis in which the independent variable is partitioned into intervals and a separate line segment is fit to each interval. Segmented regression analysis can also be performed on multivariate data by partitioning the various independent variables. Segmented regression is useful when the independent variables, clustered into different groups, exhibit different relationships between the variables in these regions.
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage