Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Fraction (mathématiques)thumb|Trois quarts de gâteau, un quart ayant été retiré. En mathématiques, une fraction est un moyen d'écrire un nombre rationnel sous la forme d'un quotient de deux entiers. La fraction a/b désigne le quotient de a par b (b≠0). Dans cette fraction, a est appelé le numérateur et b le dénominateur. Une fraction représente un partage, le dénominateur représente le nombre de parts égales faites dans une unité et son numérateur représente le nombre de parts prises dans l'unité Un nombre que l'on peut représenter par des fractions de nombres entiers est appelé nombre rationnel.
AdditionL'addition est une opération élémentaire, permettant notamment de décrire la réunion de quantités ou l'adjonction de grandeurs extensives de même nature, comme les longueurs, les aires, ou les volumes. En particulier en physique, l'addition de deux grandeurs ne peut s'effectuer numériquement que si ces grandeurs sont exprimées avec la même unité de mesure. Le résultat d'une addition est appelé une somme, et les nombres que l'on additionne, les termes.
Multiplicationthumb|La multiplication de 4 par 3 donne le même résultat que la multiplication de 3 par 4. La multiplication est l'une des quatre opérations de l'arithmétique élémentaire avec l'addition, la soustraction et la division. Cette opération est souvent notée avec la croix de multiplication « × », mais peut aussi être notée par d'autres symboles (par exemple le point médian « · ») ou par l'absence de symbole. Son résultat s'appelle le produit, les nombres que l'on multiplie sont les facteurs.
Nombre rationnelUn nombre rationnel est, en mathématiques, un nombre qui peut s'exprimer comme le quotient de deux entiers relatifs. On peut ainsi écrire les nombres rationnels sous forme de fractions notées où , le numérateur, est un entier relatif et , le dénominateur, est un entier relatif non nul. Un nombre entier est un nombre rationnel : il peut s'exprimer sous la forme . Chaque nombre rationnel peut s'écrire d'une infinité de manières différentes sous forme de fraction, par exemple ...
Divisionvignette|Division en tant que partage. Illustration de 20÷4 : partage d'un ensemble de 20 pommes en 4 parts égales. La division est une opération mathématique qui, à deux nombres a et b, associe un troisième nombre (loi de composition interne), appelé quotient ou rapport, et qui peut être notée : a : b ; a ÷ b (obélus) ; a / b (barre oblique, fraction en ligne) ; (fraction). Dans une première approche, on peut voir la quantité a÷b comme une séparation de la quantité a en b parts égales.
NombreUn nombre est un concept permettant d’évaluer et de comparer des quantités ou des rapports de grandeurs, mais aussi d’ordonner des éléments en indiquant leur rang. Souvent écrits à l’aide d’un ou plusieurs chiffres, les nombres interagissent par le biais d’opérations qui sont résumées par des règles de calcul. Les propriétés de ces relations entre les nombres sont l’objet d’étude de l’arithmétique, qui se prolonge avec la théorie des nombres.
ZéroZéro est un chiffre et un nombre. Son nom a été emprunté en 1485 à l’italien zero, contraction de zefiro, issu du latin médiéval zephirum, qui représente une transcription de l’arabe ṣĭfr (صفر), le vide (qui en français a également donné chiffre). Le zéro est noté sous forme d’une figure fermée simple : 0. En tant que chiffre, il est utilisé pour et marquer une position vide dans l’écriture des nombres en notation positionnelle. En tant que nombre, zéro est un objet mathématique permettant d’exprimer une absence comme une quantité nulle : c'est le nombre d'éléments de l’ensemble vide.
Loi commutativeEn mathématiques, et plus précisément en algèbre générale, une loi de composition interne sur un ensemble E est dite commutative si pour tous x et y dans E, En notant , la commutativité se traduit par le diagramme commutatif suivant : Fichier:Commutativité.png Les exemples les plus simples de lois commutatives sont sans doute l'addition et la multiplication des entiers naturels. L'addition et la multiplication des nombres réels et des nombres complexes, l'addition des vecteurs, l'intersection et la réunion des ensembles sont également des lois commutatives.
Notation positionnelleLa notation positionnelle est un procédé d'écriture des nombres, dans lequel chaque position d'un chiffre ou symbole est reliée à la position voisine par un multiplicateur, appelé base du système de numération. Chaque position peut être renseignée par un symbole (notation sans base auxiliaire) ou par un nombre fini de symboles (notation avec base auxiliaire). La valeur d'une position est celle du symbole de position ou celle de la précédente position apparente multipliée par la base.