vignette|Schéma expliquant le processus de Poisson Un processus de Poisson, nommé d'après le mathématicien français Siméon Denis Poisson et la loi du même nom, est un processus de comptage classique dont l'équivalent discret est la somme d'un processus de Bernoulli. C'est le plus simple et le plus utilisé des processus modélisant une . C'est un processus de Markov, et même le plus simple des processus de naissance et de mort (ici un processus de naissance pur).
In probability theory, independent increments are a property of stochastic processes and random measures. Most of the time, a process or random measure has independent increments by definition, which underlines their importance. Some of the stochastic processes that by definition possess independent increments are the Wiener process, all Lévy processes, all additive process and the Poisson point process. Let be a stochastic process. In most cases, or .
In probability theory, a probability distribution is infinitely divisible if it can be expressed as the probability distribution of the sum of an arbitrary number of independent and identically distributed (i.i.d.) random variables. The characteristic function of any infinitely divisible distribution is then called an infinitely divisible characteristic function. More rigorously, the probability distribution F is infinitely divisible if, for every positive integer n, there exist n i.i.d. random variables Xn1, .
In probability theory, a stochastic process is said to have stationary increments if its change only depends on the time span of observation, but not on the time when the observation was started. Many large families of stochastic processes have stationary increments either by definition (e.g. Lévy processes) or by construction (e.g. random walks) A stochastic process has stationary increments if for all and , the distribution of the random variables depends only on and not on .
La loi stable ou loi de Lévy tronquée, nommée d'après le mathématicien Paul Lévy, est une loi de probabilité utilisée en mathématiques, physique et analyse quantitative (finance de marché). On dit qu'une variable aléatoire réelle est de loi stable si elle vérifie l'une des 3 propriétés équivalentes suivantes : Pour tous réels strictement positifs et , il existe un réel strictement positif et un réel tels que les variables aléatoires et aient la même loi, où et sont des copies indépendantes de .
En mathématiques, le processus de Wiener est un processus stochastique à temps continu nommé ainsi en l'honneur de Norbert Wiener. Il permet de modéliser le mouvement brownien. C'est l'un des processus de Lévy les mieux connus. Il est souvent utilisé en mathématique appliquée, en économie et en physique. Le processus de Wiener est défini comme un mouvement brownien standard monodimensionnel, démarrant à l'origine, et à valeurs réelles.
En mathématique, plus précisément théorie des probabilités, un pont brownien standard est un processus stochastique à temps continu de même loi qu'un processus de Wiener mais conditionné à s'annuler en 0 et en 1. À ne pas confondre avec l'excursion brownienne. Le pont brownien standard est ainsi également appelé « mouvement brownien attaché » ("tied down Brownian motion" en anglais), « mouvement brownien attaché en 0 et 1 » ("Brownian motion tied down at 0 and 1" en anglais) ou « mouvement brownien épinglé » ("pinned Brownian motion" en anglais).
En mathématiques, en économie et en physique théorique, une marche aléatoire est un modèle mathématique d'un système possédant une dynamique discrète composée d'une succession de pas aléatoires, ou effectués « au hasard ». On emploie également fréquemment les expressions marche au hasard, promenade aléatoire ou random walk en anglais. Ces pas aléatoires sont de plus totalement décorrélés les uns des autres ; cette dernière propriété, fondamentale, est appelée caractère markovien du processus, du nom du mathématicien Markov.
vignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).
Un processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.