Modulo (opération)En informatique, l'opération modulo, ou opération mod, est une opération binaire qui associe à deux entiers naturels le reste de la division euclidienne du premier par le second, le reste de la division de a par n (n ≠ 0) est noté a mod n (a % n dans certains langages informatiques). Ainsi 9 mod 4 = 1, car 9 = 2×4 + 1 et 0 ≤ 1 < 4, 9 mod 3 = 0, ... L'opération peut être étendue aux entiers relatifs, voire aux nombres réels, mais alors les langages de programmation peuvent diverger, en particulier a mod n n'est plus forcément positif ou nul.
Fraction irréductibleUne fraction irréductible est une fraction pour laquelle il n’existe pas de fraction égale ayant des termes plus petits. Autrement dit, une fraction irréductible ne peut pas être simplifiée. La fraction n'est pas irréductible car 12 et 20 sont des multiples de 4 : (simplification par 4). On peut aussi écrire . La fraction est irréductible car 1 est le seul entier positif qui divise à la fois 3 et 5. On peut simplifier une fraction en divisant ses termes successivement par leurs diviseurs communs apparents (que l'on trouve en appliquant les critères de divisibilité par 2, 3, 5).
Algorithme d'Euclide étenduEn mathématiques, l'algorithme d'Euclide étendu est une variante de l'algorithme d'Euclide. À partir de deux entiers a et b, il calcule non seulement leur plus grand commun diviseur (PGCD), mais aussi un de leurs couples de coefficients de Bézout, c'est-à-dire deux entiers u et v tels que au + bv = PGCD(a, b). Quand a et b sont premiers entre eux, u est alors l'inverse pour la multiplication de a modulo b (et v est de la même façon l'inverse modulaire de b, modulo a), ce qui est un cas particulièrement utile.
Suite de Fibonaccivignette|Une juxtaposition de carrés dont les côtés ont pour longueur des nombres successifs de la suite de Fibonacci : 1, 1, 2, 3, 5, 8, 13 et 21. En mathématiques, la suite de Fibonacci est une suite d'entiers dans laquelle chaque terme est la somme des deux termes qui le précèdent. Notée , elle est définie par , et pour . Les termes de cette suite sont appelés nombres de Fibonacci et forment la : vignette|Représentation géométrique de la fraction continue de φ faisant apparaître les nombres de la suite de Fibonacci.
Inverse modulaireEn mathématiques et plus précisément en arithmétique modulaire, l'inverse modulaire d'un entier relatif pour la multiplication modulo est un entier satisfaisant l'équation : En d'autres termes, il s'agit de l'inverse dans l'anneau des entiers modulo n, noté Z/nZ ou Z. Une fois ainsi défini, peut être noté , étant entendu implicitement que l'inversion est modulaire et se fait modulo . La définition est donc équivalente à : L'inverse de a modulo existe si et seulement si et sont premiers entre eux, (c.-à-d.
Entier d'Eisensteinthumb|Les entiers d'Eisenstein sont les points d'intersection d'un treillis triangulaire dans le plan complexe. En mathématiques, les 'entiers d'Eisenstein', nommés en l'honneur du mathématicien Gotthold Eisenstein, sont les nombres complexes de la forme où a et b sont des entiers relatifs et est une racine cubique primitive de l'unité (souvent autrement notée j). Les entiers d'Eisenstein forment un réseau triangulaire dans le plan complexe. Ils contrastent avec les entiers de Gauss qui forment un réseau carré dans le plan complexe.
Lemme d'Euclidevignette|Le lemme d'Euclide est tiré des Éléments, ouvrage fondateur des mathématiques occidentales. En mathématiques, le lemme d'Euclide est un résultat d'arithmétique élémentaire sur la divisibilité qui correspond à la Proposition 32 du Livre VII des Éléments d'Euclide. Il s'énonce ainsi : Une généralisation est : Formellement : si a|bc et PGCD(a, b) = 1, alors a|c. Dans le traité de Gauss, les Disquisitiones arithmeticae, l'énoncé du lemme d'Euclide constitue la proposition 14 (section 2), qu'il utilise pour prouver l'unicité de la décomposition en produit de facteurs premiers d'un entier (théorème 16), admettant l'existence comme .
Quaternions de HurwitzLes quaternions de Hurwitz portent ce nom en l'honneur du mathématicien allemand Adolf Hurwitz. Soit A un anneau. On definit l'algèbre de quaternions H(A) comme l'algèbre A[H] du groupe H des quaternions. Plus explicitement, c'est le A-module libre engendré par 1, i, j et k, muni de la structure d'algèbre : 1 élément neutre pour la multiplication, et les identités : Soit , l'algèbre des quaternions sur l'anneau Z des entiers relatifs.
Commensurabilité (mathématiques)La commensurabilité est un terme mathématique essentiellement employé en histoire des mathématiques. Utilisé principalement dans la Grèce antique, il correspond au concept actuel de nombre rationnel. En mathématiques, deux grandeurs de même nature (deux longueurs, deux aires, deux volumes, etc.) non nulles a et b sont commensurables si et seulement s'il existe une unité u de ces grandeurs dont a et b soient multiples, i.e. tels qu'il existe un couple d'entiers (m, n) tels que a = mu et b = nu.
Hypothèse de Riemann généraliséeL'hypothèse de Riemann est l'une des plus importantes conjectures des mathématiques et concerne les zéros de la fonction ζ de Riemann. Divers objets géométriques et arithmétiques peuvent être décrits par ce que l'on appelle les fonctions L globales, qui sont similaires formellement à la fonction zêta de Riemann. On peut alors se poser la même question à propos des zéros de ces fonctions L, fournissant diverses généralisations de l'hypothèse de Riemann.